\(\frac{1+x}{1-x}+3=\frac{3-x}{1-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

ĐKXĐ : \(x\ne-1\)

\(\Rightarrow\frac{1+x+1-x}{1-x}=\frac{3-x}{1-x}\)

\(\Leftrightarrow1+x+1-x=3-x\)

\(\Leftrightarrow2=3-x\)

\(\Leftrightarrow x=3-2\)

\(\Leftrightarrow x=1\)( trái với đkxđ)

Vậy phưởng trình vô nghiêm

1 tháng 3 2019

\(\frac{1+x}{1-x}+3=\frac{3-x}{1-x}\)

ĐK : 1-x \(\ne0\) => x\(\ne\)1

ta có : \(\Leftrightarrow\frac{1+x}{1-x}+\frac{3\cdot\left(1-x\right)}{1-x}-\frac{3-x}{1-x}=0\)

\(=>1+x+3-3x-3+x=0\)

\(\Leftrightarrow-x=-1\)

=> x= 1 

24 tháng 4 2017

A . 3x + 2(x + 1) = 6x - 7

<=> 3x + 2x + 2 = 6x -7

<=> 5x - 6x = -7 - 2

<=> -x = -9

<=> x =9

B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)

=> 3(x +3) < 5(5 -x)

<=> 3x+9 < 25 - 5x

<=> 3x + 5x < 25 - 9

<=> 8x < 16

<=> x < 2

C . \(\frac{5}{x+1}\)\(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{x^2+x-4x-4_{ }}\)\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)\(\frac{2}{x-4}\)

<=> 5(x - 4) + 2x = 2(x +1)

<=> 5x - 20 + 2x = 2x + 2

<=>7x - 2x = 2 + 20

<=> 5x = 22

<=> x =\(\frac{22}{5}\)

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

23 tháng 4 2017

Ta có:

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\)  \(=\frac{1}{18}\)

\(\Leftrightarrow\)\(\frac{1}{\left(x+4\right)\left(x+5\right)}\) \(+\frac{1}{\left(x+5\right)\left(x+6\right)}\) \(+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\) \(=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x_1=2\\x_2=-13\end{cases}}\)

Vậy nghiệm của phương trình là {2;-13}

3 tháng 4 2018

Câu 1:

Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)

<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)

<=> \(\left(x^2-4x+8\right)^2-4=21\)

<=> \(\left(x^2-4x+8\right)^2=25\)

<=> \(x^2-4x+8=\pm5\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)

2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0

Câu 3:

Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm

Câu 4:

Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)

=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)

=> đpcm

4 tháng 4 2018

  cảm ơn bạn rất nhiều

9 tháng 2 2019

ĐKXĐ: x khác 2 và -2 

Ta có : \(\frac{x-2}{x+2}\)\(\frac{x+2}{x-2}\)\(\frac{-24}{5}\)

<=> \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)\(\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)\(\frac{-24}{5}\)

<=> \(\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}\)\(\frac{-24}{5}\)

<=> \(\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{-24}{5}\)

<=> \(\frac{2x.\left(-4\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{-24}{5}\)

<=> -40x= -24(x^2-4)

<=> -40x= -24x^2+96

<=> 24x^2-40x-96=0

<=> 24x^2-72x+32x-96=0

<=> 24x(x-3)+32(x-3)=0

<=> (x-3)(24x+32)=0

=> \(\orbr{\begin{cases}x-3=0\\24x+32=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=\frac{-4}{3}\end{cases}}\)

Vậy S=\(\hept{\begin{cases}\\\end{cases}}3;\frac{-4}{3}\)

14 tháng 2 2018

\(\frac{x+2+1}{x+2}-\frac{x+3+1}{x+3}=\frac{x+4+1}{x+4}-\frac{x+5+1}{x+5}\)

=> \(1+\frac{1}{x+2}-1-\frac{1}{x+3}=1+\frac{1}{x+4}-1-\frac{1}{x+5}\)

=> \(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{\left(x+4\right)\left(x+5\right)}\)

Đến đây bạn tự giải tiếp nk