Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="
a, dk \(x\ge0\)
ap dung bdt cosi ta co
\(\sqrt{x+3}+\frac{4x}{\sqrt{x+3}}\ge2\sqrt{4x}=4\sqrt{x}\)
dau = xay ra \(\Leftrightarrow\sqrt{x+3}=\frac{4x}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Rightarrow x=1\)(tm dk)
kl x=1 la no cua pt
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)
Bình phương 2 vế rút gọn được \(x^2-x-6=0\)
\(\Rightarrow\)\(x=3\)
2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được
\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)
\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)
\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)
Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được
\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Đặt \(\sqrt{\frac{3x-1}{x}}=a\)
\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)
\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)
\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)
\(\Leftrightarrow-2a^3+a^2+1=0\)
\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)
\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)
Dễ chứng minh \(-2a^2-a-1< 0\forall a\)
\(\Rightarrow a-1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)
\(\Leftrightarrow3x-1=x\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Đặt \(\sqrt{\frac{2x}{x-1}}=a\)
\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)
\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)
\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)
\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)
Giải pt ta được \(a=3\)
\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)
\(\Leftrightarrow\frac{2x}{x-1}=9\)
\(\Leftrightarrow x=\frac{9}{7}\)
Vậy...