Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài của bạn nè bạn gái!
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
mà \(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)
\(\Rightarrow x-2014=0\Rightarrow x=2014\)
vậy x=2014
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Vậy PT có nghiệm là \(x=2014\)
a) \(\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\)
\(\Rightarrow\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}+4=0\)
\(\Rightarrow\left(\dfrac{x+5}{2010}+1\right)+\left(\dfrac{x+4}{2011}+1\right)+\left(\dfrac{x+3}{2012}+1\right)+\left(\dfrac{x+2}{2013}+1\right)=0\)
\(\Rightarrow\left(\dfrac{x+5}{2010}+\dfrac{2010}{2010}\right)+\left(\dfrac{x+4}{2011}+\dfrac{2011}{2011}\right)+\left(\dfrac{x+3}{2012}+\dfrac{2012}{2012}\right)+\left(\dfrac{x+2}{2013}+\dfrac{2013}{2013}\right)=0\)
\(\Rightarrow\dfrac{x+5+2010}{2010}+\dfrac{x+4+2011}{2011}+\dfrac{x+3+2012}{2012}+\dfrac{x+2+2013}{2013}=0\)
\(\Rightarrow\dfrac{x+2015}{2010}+\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}+\dfrac{x+2015}{2013}=0\)
\(\Rightarrow\left(x+2015\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)
Mà \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\ne0\)
\(\Rightarrow x+2015=0\)
\(\Rightarrow x=-2015\)
b) \(\dfrac{x-22}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)
\(\Rightarrow\dfrac{x-22}{77}+\dfrac{x-11}{78}-2=\dfrac{x-74}{15}+\dfrac{x-73}{16}-2\)
\(\Rightarrow\left(\dfrac{x-22}{77}-1\right)+\left(\dfrac{x-11}{78}-1\right)=\left(\dfrac{x-74}{15}-1\right)+\left(\dfrac{x-73}{16}-1\right)\)
\(\Rightarrow\left(\dfrac{x-22}{77}-\dfrac{77}{77}\right)+\left(\dfrac{x-11}{78}-\dfrac{78}{78}\right)=\left(\dfrac{x-74}{15}-\dfrac{15}{15}\right)+\left(\dfrac{x-73}{16}-\dfrac{16}{16}\right)\)
\(\Rightarrow\dfrac{x-22-77}{77}+\dfrac{x-11-78}{78}=\dfrac{x-74-15}{15}+\dfrac{x-73-16}{16}\)
\(\Rightarrow\dfrac{x-99}{77}+\dfrac{x-99}{78}=\dfrac{x-99}{15}+\dfrac{x-99}{16}\)
\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}\right)=\left(x-99\right)\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)
\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}\right)-\left(x-99\right)\left(\dfrac{1}{15}+\dfrac{1}{16}\right)=0\)
\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)
Mà \(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\ne0\)
\(\Rightarrow x-99=0\)
\(\Rightarrow x=99\)
Vì you ghi sai phương trình nên tui sửa lại đề nghen!!!
Ta có \(\dfrac{x+1}{2013}+\dfrac{x+2}{2012}=\dfrac{x+3}{2011}+\dfrac{x+4}{2010}\)
\(\Leftrightarrow\dfrac{x+1}{2013}+1+\dfrac{x+2}{2012}+1=\dfrac{x+3}{2011}+1+\dfrac{x+4}{2010}+1\)
\(\Leftrightarrow\dfrac{x+2014}{2013}+\dfrac{x+2014}{2012}=\dfrac{x+2014}{2011}+\dfrac{x+2014}{2010}\)
\(\Leftrightarrow\dfrac{x+2014}{2013}+\dfrac{x+2014}{2012}-\dfrac{x+2014}{2011}-\dfrac{x+2014}{2010}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}-\dfrac{1}{2011}-\dfrac{1}{2010}\right)=0\)
\(\Leftrightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
Vậy \(x=-2014\)
\(a.\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\\ \Leftrightarrow\dfrac{27x-18}{45}+\dfrac{5x-5}{45}=\dfrac{42x-9}{45}-\dfrac{10x+5}{45}\\ \Rightarrow27x-18+5x-5=42x-9-10x-5\\ \Leftrightarrow32x-23=32x-14\\ \Leftrightarrow0x=9\\ \Rightarrow Phươngtrìnhvônghiệm\\ \Rightarrow S=\phi\)
\(b.\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\\ \Leftrightarrow\dfrac{3x-9}{6}-\dfrac{4-2x}{6}-\dfrac{6}{6}=\dfrac{x+5}{6}\\ \Rightarrow3x-9-4+2x-6=x+5\\ \Leftrightarrow5x-19=x+5\\ \Leftrightarrow4x=24\\ \Rightarrow x=6\\ \Rightarrow S=\left\{6\right\}\)
\(c.\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\\ \Leftrightarrow\dfrac{x+5}{2010}+1+\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1+\dfrac{x+2}{2013}+1=-4+4\\ \Rightarrow\dfrac{2015+x}{2010}+\dfrac{2015+x}{2011}+\dfrac{2015+x}{2012}+\dfrac{2015+x}{2013}=0\\ \Leftrightarrow\left(2015+x\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)
Do \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}>0\)
nên \(2015+x=0\Rightarrow x=-2015\)
Câu d tương tự...thêm rồi chuyển vế sang :v
\(\Rightarrow\frac{x}{2010}+\frac{x+1}{2011}+\frac{x+2}{2012}+\frac{x+3}{2013}+\frac{x+4}{2014}-5=0\)
\(\left(\frac{x}{2010}-1\right)+\left(\frac{x+1}{2011}-1\right)+\left(\frac{x+2}{2012}-1\right)\)\(+\left(\frac{x+3}{2013}-1\right)+\left(\frac{x+4}{2014}-1\right)=0\)
\(\frac{x-2010}{2010}+\frac{x-2010}{2011}+\frac{x-2010}{2012}+\frac{x-2010}{2013}+\frac{x-2010}{2014}=0\)
\(\left(x-2010\right).\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\right)=0\)
mà \(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}\ne0\Rightarrow x+2010=0\Rightarrow x=-2010\)
Vậy x=-2010
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
<=>\(\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+\dfrac{x-3}{2010}-1+...+\dfrac{x-2012}{1}-1=0\)
<=>\(\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+1\right)=0\)
do 1/2012+1/2011....+1 khác 0 =>x-2013=0<=>x=2013
vậy..........................
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\left(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}\right)-2012=0\)
\(\Rightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
\(\Rightarrow x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)
Vì \(x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)nên x - 2013 hoặc \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\) = 0. Nhưng \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\ne0\) nên x - 2013 = 0. Vì vậy x = 2013.
Vậy...
Tìm x:
\(\dfrac{x}{2010}+\dfrac{x+1}{2011}+\dfrac{x+2}{2012}+\dfrac{x+3}{2013}+\dfrac{x+4}{2014}=5\)
\(\dfrac{x}{2010}+\dfrac{x+1}{2011}+\dfrac{x+2}{2012}+\dfrac{x+3}{2013}+\dfrac{x+4}{2014}=5\)
\(\Leftrightarrow\left(\dfrac{x}{2010}-1\right)+\left(\dfrac{x+1}{2011}-1\right)+\left(\dfrac{x+2}{2012}-1\right)+\left(\dfrac{x+3}{2013}-1\right)+\left(\dfrac{x+4}{2014}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2010}{2010}+\dfrac{x-2010}{2011}+\dfrac{x-2010}{2012}+\dfrac{x-2010}{2013}+\dfrac{x-2010}{2014}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow x=2010\)
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\Leftrightarrow\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+...+\dfrac{x-2012}{1}-1=0\)
\(\Leftrightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+...+\dfrac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}\right)=0\)
Dễ thấy: \(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}>0\)
\(\Rightarrow x-2013=0\Rightarrow x=2013\)
Sao lại trừ 1 vậy bạn ??? mình không hiểu cho lắm mong bạn giúp đỡ
Lời giải:
Ta có:
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)
Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)
\(\Leftrightarrow x=2013\)
Vậy PT có nghiệm \(x=2013\)
đề sai?