Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x\ge3;y\ge1;z\ge665\)
\(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\)
\(\Leftrightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)=82\)
Theo BĐT Cô Si cho các số dương ta có :
\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\ge2\sqrt{\dfrac{16\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{16}=8\\\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}}=2\sqrt{4}=4\\\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\ge2\sqrt{\dfrac{1225\sqrt{z-665}}{\sqrt{z-665}}}=2\sqrt{1225}=70\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{16}{\sqrt{x-3}}+\sqrt{x-3}\right)+\left(\dfrac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)+\left(\dfrac{1225}{\sqrt{z-665}}+\sqrt{z-665}\right)\ge82\)
Dấu \("="\) hiển nhiên xảy ra khi :
\(\left\{{}\begin{matrix}\dfrac{16}{\sqrt{x-3}}=\sqrt{x-3}\\\dfrac{4}{\sqrt{y-1}}=\sqrt{y-1}\\\dfrac{1225}{\sqrt{z-665}}=\sqrt{z-665}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=16\\y-1=4\\z-665=1225\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
a: \(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{x+2\sqrt{xy}+y}{x-y}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(a.\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}=\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}=2\sqrt{x}\)
\(b.\sqrt{\left(\sqrt{5}-1\right)\sqrt{13-\sqrt{49-2.7.2\sqrt{5}+20}}}=\sqrt{\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}+1}}=\sqrt{\left(\sqrt{5}-1\right)\left(\sqrt{5+1}\right)}=\sqrt{5}-1\)
\(c.\dfrac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}=\dfrac{\sqrt{2}.\sqrt{5+2\sqrt{5}+1}\left(\sqrt{3}+1\right)\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}}=\dfrac{\sqrt{2}\left(\sqrt{5}+1\right)^2\left(\sqrt{3}+1\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}=\dfrac{2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{\sqrt{3+2\sqrt{3}+1}}=2\left(9-5\right)=2.4=8\)
Câu a
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\sqrt{x}+\sqrt{y}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\\ =\dfrac{x\sqrt{y}-y\sqrt{x}+x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\\ =\dfrac{2x\sqrt{y}}{\sqrt{xy}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
a: \(\dfrac{5}{4-\sqrt{11}}+\dfrac{1}{3+\sqrt{7}}-\dfrac{6}{\sqrt{7}-2}-\dfrac{\sqrt{7}-5}{2}\)
\(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{\sqrt{7}}{2}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(\dfrac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y+x}{y-x}\)
\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2\left(x+2\sqrt{xy}+y\right)}{2\left(x-y\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
a: \(=\dfrac{2\sqrt{7}-10-6+\sqrt{7}}{4}+\dfrac{24+6\sqrt{7}-20+5\sqrt{7}}{9}\)
\(=\dfrac{3\sqrt{7}-16}{4}+\dfrac{4+11\sqrt{7}}{9}\)
\(=\dfrac{27\sqrt{7}-144+16+44\sqrt{7}}{36}=\dfrac{71\sqrt{7}-128}{36}\)
b: \(=\dfrac{\sqrt{y}\left(x+y\right)}{\sqrt{xy}}\cdot\dfrac{\sqrt{x}-\sqrt{y}}{x+y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}}\)
c: \(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right)\cdot\dfrac{3\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+3\sqrt{x}-1}{3\sqrt{x}+1}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)}\cdot\dfrac{1}{3\sqrt{x}-5}\)
\(=\dfrac{3x+\sqrt{x}-2}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-5\right)}\)
1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\sqrt{a}-2\)
= 0
2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)
\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)
4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)
Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)
\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)
Kl: x=19, y= 5, z=1890
c) \(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3\) (*)
Đk: \(x\ge5\)
(*) \(\Leftrightarrow3\sqrt{x-5}+x-5-x+14=9+3\sqrt{x-5}\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Vậy nghiệm của phương trình (*) là \(x\ge5\)