K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

câu b bạn đã giải được chưa

7 tháng 4 2020

Ta có : \(\sqrt{x-5}-\sqrt{4x-20}-\frac{1}{5}.\sqrt{9x-45}=3\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\frac{1}{5}\sqrt{9\left(x-5\right)}=3\)

\(\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\frac{3}{5}\sqrt{x-5}=3\left(^∗\right)\)

Đặt \(\sqrt{x-5}=t,\hept{\begin{cases}t>0\\x\ge5\end{cases}}\)

Từ (*) ta có : \(t+2t+\frac{-3}{5}t=3\)

\(\Leftrightarrow5t+10t-3t=15\)

\(\Leftrightarrow t=\frac{5}{4}\left(t/m\right)\)

\(\Leftrightarrow\sqrt{x-5}=\frac{5}{4}\)

\(\Leftrightarrow x-5=\frac{25}{16}\)

\(\Leftrightarrow x=\frac{105}{16}\)

Nghiệm cuối của phương trình là : \(\left\{\frac{105}{16}\right\}\)

25 tháng 10 2020

a) \(\sqrt{\left(2x-1\right)^2}=3\)

⇔ \(\left|2x-1\right|=3\)

⇔ \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

ĐKXĐ : \(x\ge0\)

⇔ \(3\sqrt{x}-2\sqrt{3^2x}+\sqrt{4^2x}=5\)

⇔ \(3\sqrt{x}-2\cdot3\sqrt{x}+4\sqrt{x}=5\)

⇔ \(7\sqrt{x}-6\sqrt{x}=5\)

⇔ \(\sqrt{x}=5\)

⇔ \(x=25\)( tm )

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐKXĐ : \(x\ge-5\)

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot3\sqrt{x+5}=6\)

⇔ \(-\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\left(tm\right)\)

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

15 tháng 10 2021