K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

a)\(ĐKXĐ:x\ne\pm1\)

\(\frac{x+1}{x-1}+\frac{x-1}{x+1}=\frac{16}{x^2-1}\)

\(\Rightarrow\frac{\left(x+1\right)^2+\left(x-1\right)^2}{x^2-1}=\frac{16}{x^2-1}\)

\(\Rightarrow\left(x+1\right)^2+\left(x-1\right)^2=16\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(x^2-2x+1\right)=16\)

\(\Rightarrow2x^2+2=16\Rightarrow x^2+1=8\Rightarrow x^2=7\)

\(\Rightarrow x=\pm\sqrt{7}\)

12 tháng 2 2020

c)\(ĐKXĐ:x\ne-2\)

 \(\frac{12}{8+x^3}=1+\frac{1}{x+2}\)

\(\Rightarrow\frac{12}{8+x^3}=\frac{x+3}{x+2}\)

\(\Rightarrow\frac{12}{8+x^3}=\frac{\left(x+3\right)\left(x^2-2x+4\right)}{x^3+8}\)

\(\Rightarrow\left(x+3\right)\left(x^2-2x+4\right)=12\)

\(\Rightarrow x^3-5x^2+10x-12=12\)

\(\Rightarrow x^3-5x^2+10x=0\)

\(\Rightarrow x\left(x^2-5x+10\right)=0\)

Vì \(\left(x^2-5x+10\right)>0\)nên x = 0

Vậy x = 0

21 tháng 6 2020

a) 8x - 3 = 5x + 12

<=> 8x - 5x = 12 + 3

<=> 3x = 15

<=> x = 5

b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2

<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)

=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)

<=> -x^2 + 2x = x^3 - 2x^2

<=> -x^2 + 2x - x^3 + 2x^2 = 0

<=>  x^3 - x^2 - 2x = 0

<=> x(x + 1)(x - 2) = 0

<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0

<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)

Vậy: phương trình có tập nghiệm: S = {0; -1}

c) |x - 5| = 3x + 1

Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)

+) Nếu x > 5, ta có phương trình:

x - 5 = 3x + 1

<=> x - 3x = 1 + 5

<=> -2x = 6

<=> x = -3 (ktm)

+) Nếu x < 5, ta có phương trình:

-(x - 5) = 3x + 1

<=> -x + 5 = 3x + 1

<=> -x - 3x = 1 - 5

<=> -4x = -4

<=> x = 1 (tm)

Vậy: phương trình có tập nghiệm: S = {1}

14 tháng 2 2020

a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)

\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)

\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)

\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)

\(\Leftrightarrow16x+52=0\)

\(\Leftrightarrow x=-\frac{13}{4}\)

b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\)Xem lại đề !

c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-x^2-x+12=5x\)

\(\Leftrightarrow-2x+12=5x\)

\(\Leftrightarrow7x-12=0\)

\(\Leftrightarrow x=\frac{12}{7}\)

d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)

\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)

\(\Leftrightarrow28x+3x-1=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow x=\frac{1}{31}\)

14 tháng 2 2020

a) (2x + 3)2 - 3 (x - 4) (x + 4)= (x - 2)2 + 1

<=> 4x^2 + 12x + 9 - 3(x^2 - 16) = x^2 - 4x + 4 + 1 

<=> 4x^2 + 12x + 9 - 3x^2 + 48 = x^2 - 4x + 5

<=> x^2 + 12x + 57 = x^2 - 4x + 5

<=> x^2 - x^2 + 12x + 4x + 57 - 5 = 0

<=> 16x + 52 = 0

<=> 16x = -52

<=> x = -13/4

21 tháng 9 2019

a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)

cho \(\left(x^2-x\right)=a\)

\(\Rightarrow a^2+4a-12\)

\(=a^2+6a-2a-12\)

\(=\left(a^2+6a\right)-\left(2a+12\right)\)

\(=a\left(a+6\right)-2\left(a+6\right)\)

\(=\left(a+6\right)\left(a-2\right)\)

\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)

b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Gọi \(x^2+5x+5=a\)

\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)

                                                                                 \(=a^2-1-24\)

                                                                                \(=a^2-25\)

                                                                                \(=\left(a-5\right)\left(a+5\right)\)

                                                                               \(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

                                                                                \(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)