\(\sqrt{2x+3}+\sqrt{x+1}=2\sqrt{2+5x+3}+3x-8\)

b) x

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

PT \(\Leftrightarrow2x^2+\sqrt{2-x}=2x^2.\sqrt{2-x}\)

Đặt \(2x^2=a;\sqrt{2-x}=b\left(a,b\ge0\right)\)

Phương trình trở thành: \(a+b=ab\Leftrightarrow a-ab+b=0\)

Tới đây bí :v

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

30 tháng 7 2018

kuchiyose edo tensei

nhờ vào năng lực rinegan , ta có thể  đoán dc

  \(\left(\sqrt{1+x}+\sqrt{8-x}\right)^2=1+x+8-x-2\sqrt{\left(X+1\right)\left(8-x\right)}\)

vậy pt sẽ như sau

\(a,\left(\sqrt{1+x}+\sqrt{8-x}\right)^2-\sqrt{\left(1+x\right)\left(8-x\right)}=3\) " thêm bớt nếu m thông minh sẽ hiểu "

\(9+2\sqrt{\left(1+x\right)\left(8-x\right)}-\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

\(\sqrt{\left(1+x\right)\left(8-x\right)}=-6\)

\(\left(1+x\right)\left(8-x\right)=36\)

đến đây m có thể tự làm

c)  \(\sqrt{x+5}=5-x^2\)

      \(x+5=\left(5-x\right)^2\)

     \(x+5=x^4-10x^2+25\)  " rồi xong pt bậc 4 :)

 \(x^4-10x^2-x+20=0\)

\(x^4=10x^2+x-20\)

\(x^4+2mx^2+m^2=10x^2+x-20+2mx^2+m^2\)

\(\left(x^2+m\right)^2=2x^2\left(5+m\right)+x+\left(m^2-20\right)\)

\(\Delta=1-8\left(5+m\right)\left(m^2-20\right)\)

\(\Delta=1-8\left(5m^2-100+m^3-20m\right)\)

\(\Delta=1-40m^2+800-8m^3+160m\)

\(\Delta=-\left(2m+9\right)\left(4m^2+2m-89\right)\)

lấy m= -9/2 , cho nhanh thay vào ta đươc

\(\left(x^2-\frac{9}{2}\right)^2=2x^2\left(5-\frac{9}{2}\right)+x+\left(\frac{9}{2}^2-20\right)\)

\(\left(x^2-\frac{9}{2}\right)^2=x^2+x+\frac{1}{4}\)

\(\left(x^2-\frac{9}{2}\right)^2=\left(x+\frac{1}{2}\right)^2\)

\(\hept{\begin{cases}x^2-\frac{9}{2}=x+\frac{1}{2}\\x^2-\frac{9}{2}=-x-\frac{1}{2}\end{cases}}\)

đến đây cậu có thể làm tiếp :)

câu B hơi gắt cần time suy nghĩ :)