Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được
b/ Đặt \(\left(x+1\right)^2=t\ge0\)
\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)
c/ ĐKXĐ: bla bla bla...
Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:
\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)
Đặt \(3x+\frac{2}{x}-1=t\)
\(\frac{2}{t}-\frac{7}{t+6}=1\)
\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)
\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)
Bấm máy
a) Ta có: \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
\(\Leftrightarrow\frac{63\left(3x-11\right)}{693}-\frac{231x}{693}-\frac{99\left(3x-5\right)}{693}+\frac{77\left(5x-3\right)}{693}=0\)
\(\Leftrightarrow189x-693-231x-297x+495+385x-231=0\)
\(\Leftrightarrow46x-429=0\)
\(\Leftrightarrow46x=429\)
hay \(x=\frac{429}{46}\)
Vậy: \(x=\frac{429}{46}\)
b) Ta có: \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
\(\Leftrightarrow\frac{9x-0,7}{4}-\frac{5x-1,5}{7}-\frac{7x-1,1}{6}+\frac{5\left(0,4-2x\right)}{5}=0\)
\(\Leftrightarrow105\left(9x-0,7\right)-60\left(5x-1,5\right)-70\left(7x-1,1\right)+420\left(0,4-2x\right)=0\)
\(\Leftrightarrow945x-\frac{147}{2}-300x+90-490x+77+168-840x=0\)
\(\Leftrightarrow-685x+261.5=0\)
\(\Leftrightarrow-685x=-261.5\)
hay \(x=\frac{523}{1370}\)
Vậy: \(x=\frac{523}{1370}\)
c) Ta có: \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
\(\Leftrightarrow\frac{14\left(5x-3\right)}{84}-\frac{21\left(7x-1\right)}{84}-\frac{24\left(2x-1\right)}{84}+\frac{420}{84}=0\)
\(\Leftrightarrow70x-42-147x+21-48x+24+420=0\)
\(\Leftrightarrow-125x+423=0\)
\(\Leftrightarrow-125x=-423\)
hay \(x=\frac{423}{125}\)
Vậy: \(x=\frac{423}{125}\)
d) Ta có: \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
\(\Leftrightarrow\frac{435}{30}-\frac{12\left(x+3\right)}{30}-\frac{45x}{30}+\frac{20\left(x-7\right)}{30}=0\)
\(\Leftrightarrow435-12x-36-45x+20x-140=0\)
\(\Leftrightarrow-37x+259=0\)
\(\Leftrightarrow-37x=-259\)
hay \(x=7\)
Vậy: x=7
Bài 1 :
a, Ta có : \(3x-1=2x+4\)
=> \(3x-2x=4+1\)
=> \(x=5\)
Vậy phương trình có tập nghiệm \(S=\left\{5\right\}\)
b, Ta có : \(5x-2=0\)
=> \(5x=2\)
=> \(x=\frac{2}{5}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{2}{5}\right\}\)
c, Ta có : \(7x-4=3x+12\)
=> \(7x-3x=12+4\)
=> \(4x=16\)
=> \(x=4\)
Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)
d, Ta có : \(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)
=> \(\frac{6\left(x-1\right)}{12}+\frac{3\left(3x+2\right)}{12}=\frac{x-7}{12}\)
=> \(6\left(x-1\right)+3\left(3x+2\right)=x-7\)
=> \(6x-6+9x+6=x-7\)
=> \(6x+9x-x=6-7-6\)
=> \(14x=-7\)
=> \(x=-\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{-\frac{1}{2}\right\}\)
Bài 2 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}x^2-2x+1\ne0\\x-1\ne0\end{matrix}\right.\)
=> \(x-1\ne0\)
=> \(x\ne1\)
- Ta có : \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right)\left(\frac{x-1}{x}\right)-\frac{2}{x-1}\)
= \(\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\frac{x-2}{x-1}\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
có (x+1)^2+2
=x^2+2x+3
Đặt x^2+2x+3=a
=> x^2+2x+4=a+1
x^2+2x+7=a+4
pt <=>(a+4)/a=a+1
=> a^2+a=a+4
<=>a^2=4
<=>a=2 do x^2+2x+3>0
=> x^2+2x+3=2
<=> (x+1)^2=0
<=> x+1=0
<=> x=-1.