Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R
=>a^2*x+a-ax-2x-2=0
=>x(a^2-a-2)+(a-2)=0
=>x(a-2)(a+1)+(a-2)=0
Nếu a=2 thì phương trình có vô số nghiệm
Nếu a=-1 thì ptvn
Nếu a<>2; a<>-1 thì pt có nghiệm duy nhất là x=-a-1
Điều kiện xác định của bất phương trình là a ≠0
Biến đổi :
\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)
\(\Leftrightarrow\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\)
\(\Leftrightarrow ax+2x>\dfrac{x}{a}-\dfrac{x}{a}+\dfrac{2}{a}-\dfrac{1}{a}\)
\(\Leftrightarrow ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)
\(\Leftrightarrow\left(a+2\right)x>\dfrac{1}{a}\)
Nếu a>-2, a≠0 thì nghiệm của bất phương trình là x > \(\dfrac{1}{a\left(a+2\right)}\)
Nếu a < -2 thì nghiệm của bất phương trình là x < \(\dfrac{1}{a\left(a+2\right)}\)
Nếu a = -2 thì nghiệm của bất phương trình là 0x\(>-\dfrac{1}{2}\),
Nghiệm đúng với mọi x
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
a( ax + 1) = x(a + 2) + 2
<=>a2x+a=xa+2x+2
<=>a2x-xa-2x=2-a
<=>x.(a2-a-2)=2-a
<=>x=\(\frac{2-a}{a^2-a-2}=\frac{-\left(a-2\right)}{a^2-2a+a-2}=\frac{-\left(a-2\right)}{a.\left(a-2\right)+\left(a-2\right)}=\frac{-\left(a-2\right)}{\left(a-2\right)\left(a+1\right)}=\frac{-1}{a+1}\)