Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(u=x^2-x\)
Phương trình trở thành \(u^2-4u+4=0\)
\(\Leftrightarrow\left(u-2\right)^2=0\)
\(\Leftrightarrow u-2=0\)
\(\Rightarrow x^2-x=2\)
\(\Rightarrow x^2-x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)
Đặt \(2x+1=w\)
Phương trình trở thành \(w^2-w=2\)
\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
Ta có
4x-8=9x-3-2x+1
<=>-6=-3x(chuyển vế đổi dấu)
<=>x=2
b)
Ta có
Căn cả 2 vế ta đcx-5/ cawn3 =3
<=>x=10.2
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm
\(\left(3x-5\right)\left(-2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)
\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)
\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)
\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)
\(\Leftrightarrow3x^2+2+7x=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)
\(a,\left(x+2\right)^2\left(4x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\4x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+2=0\\4x=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{3}{2}\end{cases}}\)
Vậy .............
\(b,3x^2-2x-1=0\)
\(\Leftrightarrow3x^2-3x+x-1=0\)
\(\Leftrightarrow\left(3x^2-3x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Vậy ............
\(\left(x+2\right)^2\left(4x+6\right)=0\)
\(< =>\orbr{\begin{cases}\left(x+2\right)^2=0\\4x+6=0\end{cases}< =>\orbr{\begin{cases}x+2=0\\4x=-6\end{cases}< =>\orbr{\begin{cases}x=-2\\x=-\frac{3}{2}\end{cases}}}}\)
Vậy phương trình đã cho có nghiệm \(x=-2;x=-\frac{3}{2}\)
\(3x^2-2x-1=0\)
\(< =>3x^2-3x+x-1=0\)
\(< =>3x\left(x-1\right)+\left(x-1\right)=0\)
\(< =>\left(3x+1\right)\left(x-1\right)=0\)
\(< =>\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}}< =>\orbr{\begin{cases}3x=-1\\x=1\end{cases}}< =>\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
Vậy phương trình đã cho có nghiệm \(x=-\frac{1}{3};x=1\)
\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)
\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)
\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)
\(\Leftrightarrow12x^2+5x=3\)
\(\Leftrightarrow12x^2+5x-3=0\)
\(\Leftrightarrow12x^2-4x+9x-3=0\)
\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)
\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)