\(8x^3-12x^2+6x-28=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

8x^2(x-2)+4x(x-2)+14(x-2)=0

<=>2(x-2)(4x^2+2x+7) = 0

Ta có 4x^2+2x+7=(2x)^2+2.2x1/2 +1/4 -1/4+28/4=(2x+1/2)^2+27/4 >0 V x

=>x-2=0 <=>x=2

Vậy PT có tập No={2}

26 tháng 2 2020

a, \(ĐKXĐ:x\ne2\)

\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)

\(\Rightarrow1+3x-6=3-x\)

\(\Leftrightarrow1+3x-6-3+x=0\)

\(\Leftrightarrow4x-8=0\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\left(ktm\right)\)

vậy x thuộc tập hợp rỗng

b, \(ĐKXĐ:x\ne\pm1\)

\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow x^2+x-2x=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x-1=0\Rightarrow x=1\left(ktm\right)\end{cases}}\)

vậy x = 0

c, \(ĐKXĐ:x\ne\pm\frac{1}{2}\)

\(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)

\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(2x+1\right)}\)

\(\Leftrightarrow\frac{32x^2}{12\left(1-2x\right)\left(2x+1\right)}=\frac{-8x\left(2x+1\right)}{12\left(1-2x\right)\left(2x+1\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(2x+1\right)}\)

\(\Rightarrow32x^2=-16x^2-8x-3+6x-24x+48x\)

\(\Leftrightarrow48x^2=22x-3\)

\(\Leftrightarrow48x^2-22x+3=0\)

20 tháng 6 2017

b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)

<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)

<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2

c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)

<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)

Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

20 tháng 6 2017

a) 2x3 - x2 - 8x + 4 = 0

x2.(2x - 1) - 4.(2x - 1) = 0

(x2 - 4)(2x - 1) = 0

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)

Với x2 = 4

=> x = 2 hoặc x = -2

=> x = {-2 ; 2 ; \(\frac{1}{2}\))

9 tháng 6 2017

ko có nghiệm nguyên vì ko phân tích đc nhân tử 

tui mới  lớp 8 chưa biết pp giải lớp 9

5 tháng 8 2018

\(8x^3+12x^2+6x+1=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)^3=0\)

\(\Leftrightarrow\)\(2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

Vậy....

5 tháng 8 2018

Ta có \(8x^3+12x^2+6x+1=0\)

\(\Rightarrow8.\left(x^3+3x^2.1+3.x.1^2+1^3\right)=0\)

\(\Rightarrow8.\left(x+1\right)^3=0\)

\(\Rightarrow\left(x+1\right)^3=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

28 tháng 12 2017

a, \(x^4-6x^3+11x^2-6x+1=0\)

\(\Rightarrow\left(x^2-3x+1\right)^2=0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)

Chúc bạn học tốt

28 tháng 12 2017

\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)

\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)

\(\left(x^2-3x+1\right)^2=0\)

tự làm

B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)

\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)

\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)

\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)

\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)

  \(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)

\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)

\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)

câu C nghĩ đã

17 tháng 3 2019

\(x^6-6x^4-64x^3+12x^2-8=0\)

\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^4+4x^3+12x^2-8x+4\right)=0\)

\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^4+4x^3+4x^2\right)+\left(8x^2-8x+\frac{8}{4}\right)+2\right]=0\)

\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^2+2x\right)^2+8\left(x-\frac{1}{2}\right)^2+2\right]=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow x=2\pm\sqrt{6}\)

19 tháng 7 2016

\(8x^3+12x^2+6x+1=0\Leftrightarrow8x^3+4x^2+8x^2+4x+2x+1=0\Leftrightarrow4x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4x^2+4x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(2x+1\right)^2=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)

Nếu bạn đã học hằng đẳng thức thì sẽ dễ làm được

19 tháng 7 2016

= (2x)3+3×(2x)2+3×2x×12+13​=(2x+1)3