K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)

\(\left(8x^2+11x+1\right)^2=\left(x+1\right)^2\left(4x^2+6x+5\right)\)

\(\left(8x^2+11x+1\right)^2=4x^4+6x^3+5x^2+8x^3+12x^2+10x+4x^2+6x+5\)

\(64x^4+176x^3+137x^2+22x+1=4x^4+14x^3+21x^2+16x+5\)

\(64x^4+176x^3+137x^2+22x+1-4x^4-14x^3-21x^2-16x-5=0\)

Tự giải quyết nốt,đc chứ.

7 tháng 5 2020

\(ĐK:x\inℝ\)

Phương trình đã cho tương đương với

\(\left(3x+2\right)^2-\left(x^2+x+3\right)\)\(=\left(x+1\right)\sqrt{\left(x+1\right)\left(3x+2\right)+\left(x^2+x+3\right)}\)

Đặt \(3x+2=u;\sqrt{4x^2+6x+5}=v\left(v\ge0\right)\)ta thu được hệ phương trình

\(\hept{\begin{cases}u^2=x^2+x+3+\left(x+1\right)v\\v^2=\left(x+1\right)u+x^2+x+3\end{cases}}\)\(\Rightarrow u^2-v^2=\left(x+1\right)\left(v-u\right)\)

\(\Leftrightarrow\left(u-v\right)\left(u+v+x+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x+1=0\end{cases}}\)

Xét hai trường hợp:

TH1:\(u=v\Leftrightarrow3x+2=\sqrt{4x^2+6x+5}\) \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\\9x^2+12x+4=4x^2+6x+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-2}{3}\left(1\right)\\5x^2+6x-1=0\left(2\right)\end{cases}}\)

Giải phương trình (2), ta thu được hai nghiệm \(\frac{-3+\sqrt{14}}{5}\)và \(\frac{-3-\sqrt{14}}{5}\)kết hợp điều kiện (1) suy ra TH1 thu được 1 nghiệm \(x=\frac{\sqrt{14}-3}{5}\)

TH2: \(u+v+x+1=0\Leftrightarrow\sqrt{4x^2+6x+5}=-4x-3\)

\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\\4x^2+6x+5=16x^2+24x+9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le\frac{-3}{4}\left(3\right)\\12x^2+18x+4=0\left(4\right)\end{cases}}\)

Giải phương trình (4) ta thu được hai nghiệm \(\frac{-9-\sqrt{33}}{12}\)và \(\frac{-9+\sqrt{33}}{12}\)kết hợp điều kiện (3) suy ra TH2 thu được 1 nghiệm là \(x=-\frac{9+\sqrt{33}}{12}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{\sqrt{14}-3}{5};-\frac{9+\sqrt{33}}{12}\right\}\)

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

22 tháng 11 2017

Điều kiện tự làm nha:

\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)

\(\Leftrightarrow\left(8x^2+11x+1\right)^2=\left(x+1\right)^2.\left(4x^2+6x+5\right)\)

\(\Leftrightarrow30x^4+81x^3+58x^2+3x-2=0\)

\(\Leftrightarrow\left(5x^2+6x-1\right)\left(6x^2+9x+2\right)=0\)

Tự làm nốt nhé.

24 tháng 2 2021

thôi thôi

24 tháng 2 2021

help me pls 

               cho hàm số y=-3x2

          a) vẽ parabol

          b) tìm điểm trên đồ thị (P) có hoành độ =2 

                                                       tung độ = -27

          c) hàm số đồng/nghịch biến khi nào ?

          d) tìm tọa độ giao điểm của đồ thị (P) và đường thẳng y= -2V3x+1

10 tháng 7 2021

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

15 tháng 2 2020

Ta viết lại pt thành: \(\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)

Đặt: \(\left\{{}\begin{matrix}a=2x-3\\b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\end{matrix}\right.\) ta thu được hệ pt:

\(\left\{{}\begin{matrix}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{matrix}\right.\) Trừ 2pt của hệ ta có:

\(\Leftrightarrow a^2-b^2=\left(x-1\right)\left(b-a\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)

Ta có trường hợp 1:

\(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{3}{2}\\2x^2-6x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3-\sqrt{3}}{2}\left(ktm\right)\\x=\frac{3+\sqrt{3}}{2}\left(tmđk\right)\end{matrix}\right.\)

Tương tự ta có trường hợp 2:

\(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\Leftrightarrow\left\{{}\begin{matrix}x\le2\\7x^2-30x+36=0\end{matrix}\right.\left(vn\right)\)

Vậy pt có \(n_0\) \(S=\left\{x=\frac{3+\sqrt{3}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)