Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow2x-5=x-3\)
\(\Leftrightarrow x=2\) (ktm)
Vậy pt vô nghiệm
b.
ĐKXĐ: \(x\in R\)
\(\Leftrightarrow x^2-x+6=x^2+3\)
\(\Leftrightarrow x=3\)
a) \(\sqrt{-x^2+x+4}=x-3\left(đk:x\ge3\right)\)
\(-x^2+x+4=x^2-6x+9\)
\(2x^2-7x-5=0\)
\(\Delta=49-4.2.\left(-5\right)=89\)
\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{89}}{4}\left(TM\right)\\x=\dfrac{7-\sqrt{89}}{4}\left(L\right)\end{matrix}\right.\)
b) \(\sqrt{-2x^2+6}=x-1\left(đk:x\ge1\right)\)
\(-2x^2+6=x^2-2x+1\)
\(3x^2-2x-5=0\)
\(\Delta=4+4.3.5=64\)
\(\left[{}\begin{matrix}x=\dfrac{2-8}{6}=-1\left(L\right)\\x=\dfrac{2+8}{6}=\dfrac{5}{3}\left(TM\right)\end{matrix}\right.\)
c) \(\sqrt{x+2}=1+\sqrt{x-3}\left(Đk:x\ge3\right)\)
\(x+2=1+x-3+2\sqrt{x-3}\)
\(\sqrt{x-3}=2\)
\(x-3=4\)
\(x=7\)
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
đk : x >= 0
\(\sqrt{x}-1+\sqrt{2x+2}-2+\sqrt{3x+6}-3=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{3x+6-9}{\sqrt{3x+6}+3}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x+2}+2}+\dfrac{3}{\sqrt{3x+6}+3}\right)=0\Leftrightarrow x=1\left(tm\right)\)
\(ĐK:-\dfrac{5}{2}\le x\le6\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{6-x}-2\right)=-2x^2-x+10\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x+5}+3}-\dfrac{2-x}{\sqrt{6-x}+2}+\left(x-2\right)\left(2x+5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{6-x}+2}+2x+5\right)=0\)
Do \(x\ge-\dfrac{5}{2}\Leftrightarrow2x+5\ge0\Leftrightarrow\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{6-x}+2}+2x+5>0\)
Vậy \(x-2=0\Leftrightarrow x=2\left(tm\right)\)
\(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
ĐK:\(x\ge3\)
\(pt\Leftrightarrow\sqrt{x^2-5x+6}-\sqrt{2}+\sqrt{x+1}-\sqrt{5}=\sqrt{x-2}-\sqrt{2}+\sqrt{x^2-2x-3}-\sqrt{5}\)
\(\Leftrightarrow\frac{x^2-5x+6-2}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x+1-5}{\sqrt{x+1}+\sqrt{5}}=\frac{x-2-2}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-3-5}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{x^2-5x+4}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}=\frac{x-4}{\sqrt{x-2}+\sqrt{2}}+\frac{x^2-2x-8}{\sqrt{x^2-2x-3}+\sqrt{5}}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{x-4}{\sqrt{x+1}+\sqrt{5}}-\frac{x-4}{\sqrt{x-2}+\sqrt{2}}-\frac{\left(x-4\right)\left(x+2\right)}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{x-1}{\sqrt{x^2-5x+6}+\sqrt{2}}+\frac{1}{\sqrt{x+1}+\sqrt{5}}-\frac{1}{\sqrt{x-2}+\sqrt{2}}-\frac{x+2}{\left(x+2\right)\sqrt{x^2-2x-3}+\sqrt{5}}\right)=0\)
Suy ra x-4=0 =>x=4
đk : x >= 2
\(3\sqrt{x-2}+2x=\sqrt{x+6}+6\)
\(\Leftrightarrow3\sqrt{x-2}-3+2x-6-\left(\sqrt{x+6}-3\right)=0\)
\(\Leftrightarrow\frac{9\left(x-2\right)-9}{3\sqrt{x-2}+3}+2\left(x-3\right)-\frac{x+6-9}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow\frac{9x-27}{3\sqrt{x-2}+3}+2\left(x-3\right)-\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{9}{3\sqrt{x-2}+3}+2-\frac{1}{\sqrt{x+6}+3}\ne0\right)=0\Leftrightarrow x=3\)(tmđk)