Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )
c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )
\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow2\sqrt{x+5}=4\)
\(\Leftrightarrow\sqrt{x+5}=2\)
\(\Leftrightarrow x+5=4\)
\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )
Vậy.......
giải phương trình
a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
b) \(\sqrt{x^2-4x+4}=2x-3\)
a) đk: \(x\ge-2\)
Ta có: \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)
\(\Leftrightarrow\frac{5}{4}\sqrt{x+2}=3\)
\(\Leftrightarrow\sqrt{x+2}=\frac{12}{5}\)
\(\Leftrightarrow x+2=\frac{144}{25}\)
\(\Rightarrow x=\frac{94}{25}\) (tm)
b) đk: \(x\ge\frac{3}{2}\)
Ta có: \(\sqrt{x^2-4x+4}=2x-3\)
\(\Leftrightarrow\left|x-2\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-3\\x-2=3-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{5}{3}\left(tm\right)\end{cases}}\)
a) \(\sqrt{x+2}-\sqrt{4x+8}+\frac{3}{4}\sqrt{9x+18}=3\)
ĐKXĐ : x ≥ -2
⇔ \(\sqrt{x+2}-\sqrt{2^2\left(x+2\right)}+\frac{3}{4}\sqrt{3^2\left(x+2\right)}=3\)
⇔ \(\sqrt{x+2}-2\sqrt{x+2}+\frac{3}{4}\cdot3\sqrt{x+2}=3\)
⇔ \(-\sqrt{x+2}+\frac{9}{4}\sqrt{x+2}=3\)
⇔ \(\frac{5}{4}\sqrt{x+2}=3\)
⇔ \(\sqrt{x+2}=\frac{12}{5}\)
⇔ \(x+2=\frac{144}{25}\)
⇔ \(x=\frac{94}{25}\left(tmđk\right)\)
b) \(\sqrt{x^2-4x+4}=2x-3\)
⇔ \(\sqrt{\left(x-2\right)^2}=2x-3\)
⇔ \(\left|x-2\right|=2x-3\)(1)
Với x < 2
(1) ⇔ -( x - 2 ) = 2x - 3
⇔ 2 - x = 2x - 3
⇔ -x - 2x = -3 - 2
⇔ -3x = -5
⇔ x = 5/3 ( tm )
Với x ≥ 2
(1) ⇔ x - 2 = 2x - 3
⇔ x - 2x = -3 + 2
⇔ -x = -1
⇔ x = 1 ( ktm )
Vậy x = 5/3
b)\(\sqrt{4x-8}+2\sqrt{9x-18}-\sqrt{x-2}=14\)
Đk:\(x\ge2\)
\(pt\Leftrightarrow\sqrt{4x-8}-4+2\sqrt{9x-18}-12-\left(\sqrt{x-2}-2\right)=0\)
\(\Leftrightarrow\frac{4x-8-16}{\sqrt{4x-8}+4}+\frac{4\left(9x-18\right)-144}{2\sqrt{9x-18}+12}-\frac{x-2-4}{\sqrt{x-2}+2}=0\)
\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x-8}+4}+\frac{36\left(x-6\right)}{2\sqrt{9x-18}+12}-\frac{x-6}{\sqrt{x-2}+2}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x-8}+4}+\frac{36}{2\sqrt{9x-18}+12}-\frac{1}{\sqrt{x-2}+2}\right)=0\)
Thấy: \(\frac{4}{\sqrt{4x-8}+4}+\frac{36}{2\sqrt{9x-18}+12}-\frac{1}{\sqrt{x-2}+2}=0\) vô nghiệm
Nên x-6=0 suy ra x=6
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
1: =>|2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>2x=6 hoặc 2x=-4
=>x=3 hoặc x=-2
2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
=>x-3=4
hay x=7
5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=2 hoặc x=-1
a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)
\(=\sqrt{x-3}+3-x\)
c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)
=>2 căn x-2=18
=>x-2=81
=>x=83
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
Tớ làm nốt nè :3
\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)
\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)
\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)
\(\Leftrightarrow4x^2+4x-8x-8=0\)
\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)
\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)
\(\Leftrightarrow4\sqrt{x-1}=7\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)
\(\Leftrightarrow x=\dfrac{65}{16}\)
c. Sai đề.
\(3\sqrt{x-2}-\sqrt{4x-8}+4\sqrt{\dfrac{9x-18}{4}}=14\left(x\ge0;x\ne2\right)\\ \Leftrightarrow3\sqrt{x-2}-\sqrt{4\left(x-2\right)}+4\cdot\dfrac{1}{2}\sqrt{9\left(x-2\right)}=14\\ \Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+6\sqrt{x-2}=14\\ \Leftrightarrow7\sqrt{x-2}=14\\ \Leftrightarrow\sqrt{x-2}=2\\ \Leftrightarrow x-2=4\\ \Leftrightarrow x=6\left(tm\right)\)