K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

5-6-5-6--5-5-5--5-

6 tháng 4 2022

ủa rồi chỉ có VT chứ ko có VP á 

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

6 tháng 4 2021

( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )

<=> x2 - 3x + 5 = 1

<=> x2 - 3x + 4 = 0

<=> x2 - 3x + 9/4 + 7/4 = 0

<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )

=> Pt vô nghiệm

\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)

<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)

<=> x - 3 > 0 <=> x > 3

6 tháng 4 2021

a) 

\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)

b) \(x>3\)

Ký hiệu khoảng:

\(\left(3,\infty\right)\)

15 tháng 5 2021

minh biet

NM
5 tháng 3 2022

ta có : 

\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)

\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)

\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)

\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)

<=> (m-5)x = 10 - 4m2

TH1: m - 5 = 0 <=> m = 5

Thay m = 5, ta có :

0x = 10 - 4.52

<=> 0x = -90 (vô lí)

Vậy với m =5, phương trình vô nghiệm

TH2: m-5 \(\ne\)0 <=> \(m\ne5\)

Phương trình có nghiệm duy nhất : \(x=\frac{10-4m^2}{m-5}\)

a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)

Đến đây nhường bn, rất dễ =))

b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)

\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)

\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)

Khử mẫu \(x-1-3=5\left(x-5\right)\)

Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu 

6 tháng 7 2020

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)

\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)

\(< =>9=x^2-2x-x+2+3x+6\)

\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)

\(< =>x^2-2=0\)\(< =>x^2=2\)

\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)

Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)

15 tháng 1 2016

ý 1:  khi m=2 thì:

(m + 1 )x - 3 = x + 5

<=>(2+1)x-3=x+5

<=>3x-3=x+5

<=>2x=8

<=>x=4

Vậy khi m=2 thì x=4.

ý 2:  

Để pt trên <=> với 2x-1=3x+2

Thì 2 PT phải có cùng tập nghiệm hay nghiệm của 2x-1=3x+2 cũng là nghiệm của PT (m + 1 )x - 3 = x + 5

Ta có: 2x-1=3x+2

<=>x=-3

=>(m+1).(-3)-3=(-3)+5

<=>-3m-3-3=2

<=>-3m=8

<=>m=-8/3

Vậy m=-8/2 thì 2 PT nói trên tương đương với nhau.

 

21 tháng 3 2017

 AI ĐÓ VÍT DÙM BÀI VĂN TẢ ÔNG CHO TRIỆU !!!!!!!!!!! 

21 tháng 1 2018

pt <=> x^2+7x+10-12x+9 = x^2-10x+25

<=> x^2-5x+19 = x^2-10x+25

<=> x^2-5x+19-(x^2-10x+25) = 0

<=> x^2-5x+19-x^2+10x-25 = 0

<=> 5x - 6 = 0

<=> 5x=6

<=> x=6/5

Vậy pt có tập nghiệm S = {6/5}

Tk mk nha

12 tháng 2 2018

\(x^2+10x+25-4x\left(x+4\right)\)

\(=x^2+10x+25-4x^2-16x\)

\(=-3x^2-6x+25\)

\(=-3.\left(x^2+2x-\frac{25}{3}\right)\)

đó dạng tích đó 

1 tháng 3 2019

\(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\left(ĐKXĐ:x\ne0;x\ne-1\right)\)

\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2+\frac{2x^2}{x+1}=\frac{5}{4}\)

\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{2x^2}{x+1}+1=\frac{5}{4}+1\)

\(\Leftrightarrow\left(\frac{x^2}{x+1}+1\right)^2=\frac{9}{4}\Leftrightarrow\orbr{\begin{cases}\frac{x^2}{x+1}+1=\frac{3}{2}\\\frac{x^2}{x+1}+1=\frac{-3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x^2}{x+1}=\frac{1}{2}\\\frac{x^2}{x+1}=-\frac{5}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x^2=x+1\\2x^2=-5x-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x^2-x-1=0\\2x^2+5x+5=0\end{cases}}\)

Mà \(2x^2+5x+5=2\left(x+\frac{5}{4}\right)^2+\frac{15}{8}>0\left(\forall x\right)\)

Do đó: \(2x^2-x-1=0\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\) (thỏa mãn ĐKXĐ)

Tập nghiệm: \(S=\left\{-\frac{1}{2};1\right\}\)