K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^3+3x^2-32x=48\)

\(2x^3+3x^2-32x-48=0\)

\(\left(2x^3+3x^2\right)-\left(32x+48\right)=0\)

\(x^2\left(2x+3\right)-16\left(2x+3\right)=0\)

\(\left(x^2-16\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=4\end{cases}}\\x=-\frac{3}{2}\end{cases}}}\)\(\left(x+4\right)\left(x-4\right)\left(2x+3\right)=0\)

\(\hept{\begin{cases}x+4=0\\x-4=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=4\\x=-\frac{3}{2}\end{cases}}}\)

26 tháng 2 2020

\(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\)

\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2-16\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0;x+4=0\\2x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm4\\x=\frac{-3}{2}\end{cases}}\)

Vậy tập nghiệm của pt là S={4;-4;-3/2}

_Học tốt_

18 tháng 4 2020

a)3(x-1)(2x-1)-5(x+8)(x-1)=0

<=>(x-1)(6x-3-5x-40)=0

<=>(x-1)(x-43)=0

b)2x^3+3x^2-32x-48=0

<=>x^2(2x+3)-16(2x+3)=0

<=>(2x+3)(x-4)(x+4)=0

học tốt

Sửa đề: 2(x-1)^2+4x-19=(2x-1)(2x+5)

=>2(x^2-2x+1)+4x-19=4x^2+10x-2x-5

=>2x^2-4x+2+4x-19=4x^2+8x-5

=>4x^2+8x-5=2x^2-17

=>2x^2+8x+12=0

=>x^2+4x+6=0

=>(x+2)^2+2=0(loại)

NV
13 tháng 2 2020

\(2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow2x^3-32x+3x^2-48=0\)

\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=-\frac{3}{2}\end{matrix}\right.\)

b/ \(\Leftrightarrow10x^2-15x+4x-6=0\)

\(\Leftrightarrow5x\left(2x^2-3\right)+2\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$10x^2-11x-6=0$

$\Leftrightarrow 10x^2-15x+4x-6=0$

$\Leftrightarrow 5x(2x-3)+2(2x-3)=0$

$\Leftrightarrow (2x-3)(5x+2)=0$

$\Rightarrow 2x-3=0$ hoặc $5x+2=0$

$\Rightarrow x=\frac{3}{2}$ hoặc $x=-\frac{2}{5}$

b)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=\pm 4$ hoặc $x=\frac{-3}{2}$

NV
8 tháng 1

\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)

- Với \(x=2\Rightarrow y=5\)

- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\) 

Đặt \(y-5=n\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)

\(\Rightarrow x^2+8=n^2\)

\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)

\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\) 

25 tháng 4 2019

\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)

\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)

\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)

25 tháng 4 2019

a, x1=3 ; x2=-5

b,x1=-2 ; x2=-1/3

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

a)

$3(x-1)(2x-1)=5(x+8)(x-1)$

$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$

$\Leftrightarrow (x-1)(x-43)=0$

$\Rightarrow x-1=0$ hoặc $x-43=0$

$\Rightarrow x=1$ hoặc $x=43$

b)

$9x^2-1=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$

$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$

$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$

$\Leftrightarrow (3x+1)(x+2)=0$

$\Rightarrow 3x+1=0$ hoặc $x+2=0$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

c)

$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$

$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$

$\Leftrightarrow (x+7)(3x-1-7+x)=0$

$\Leftrightarrow (x+7)(4x-8)=0$

$\Rightarrow x+7=0$ hoặc $4x-8=0$

$\Rightarrow x=-7$ hoặc $x=2$

d)

$x^3-5x^2+6x=0$

$\Leftrightarrow x(x^2-5x+6)=0$

$\Leftrightarrow x(x-2)(x-3)=0$

$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$

$\Rightarrow x=0; x=2$ hoặc $x=3$

e)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Lời giải:
a)

$x^2+2x-15=0$

$\Leftrightarrow x^2-3x+5x-15=0$

$\Leftrightarrow x(x-3)+5(x-3)=0$

$\Leftrightarrow (x-3)(x+5)=0$

$\Rightarrow x=3$ hoặc $x=-5$

b)

$9x^2-1=(3x+1)(4x+1)=12x^2+7x+1$

$\Leftrightarrow 3x^2+7x+2=0$

$\Leftrightarrow (x+2)(3x+1)=0$

$\Rightarrow x=-2$ hoặc $x=-\frac{1}{3}$

c)

$2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x^2-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)(2x^2+8x+3x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x=\pm 4$ hoặc $x=-\frac{3}{2}$

3 tháng 3 2022

\(a,x-5\left(x-2\right)=6x\\ \Leftrightarrow x-5x+10-6x=0\\ \Leftrightarrow-10x+10=0\\ \Leftrightarrow x=1\\ b,2^3+3x^2-32x=48\\ \Leftrightarrow3x^2-32x+8=48\\ \Leftrightarrow3x^2-32x-40=0\)

Nghiệm xấu lắm bn

\(c,\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\\ \Leftrightarrow c,\left(3x+1\right)\left[\left(2x-5\right)^2-\left(x-3\right)^2\right]\\ \Leftrightarrow\left(3x+1\right)\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x-2\right)\left(3x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)

\(d,9x^2-1=\left(3x+1\right)\left(4x+1\right)\\ \Leftrightarrow\left(3x+1\right)\left(4x+1\right)-\left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(4x+1-3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)

3 tháng 3 2022

\(b,2x^3+3x^2-32x-48=0\\ \Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\\ \Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\\ \Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{3}{2}\\x=-4\end{matrix}\right.\)