Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, ĐKXĐ: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\\x=2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
b, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\sqrt{x+1}\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\x+1=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ: \(x>2\)
\(pt\Leftrightarrow\frac{x}{\sqrt{x-2}}=\frac{3-x}{\sqrt{x-2}}\)
\(\Leftrightarrow x=3-x\)
\(\Leftrightarrow x=\frac{3}{2}\left(l\right)\)
\(\Rightarrow\) Phương trình vô số nghiệm
d, ĐKXĐ: \(x>-1\)
\(pt\Leftrightarrow\frac{x^2-4}{\sqrt{x+1}}=\frac{x+3+x+1}{\sqrt{x+1}}\)
\(\Leftrightarrow x^2-4=2x+4\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=4\)

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)
ĐKXĐ: \(x>1\)
\(3x^2+1=4\)
\(3x^2=3\)
\(x^2=1\)
\(x=\pm1\)
=> Pt vô nghiệm
b) ĐKXĐ: x>-4
\(x^2+3x+4=x+4\)
\(x^2+2x=0\)
\(x\left(x+2\right)=0\)
\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

a) ĐKXĐ: x ≤ 3.
+x =
+ 1 ⇔ x = 1. Tập nghiệm S = {1}.
b) ĐKXĐ: x = 2.
Giá trị x = 2 nghiệm đúng phương trình. Tập nghiệm S = {2}.
c) ĐKXĐ: x > 1.
⇔
= 0
=> x = 3 (nhận vì thỏa mãn ĐKXĐ)
x = -3 (loại vì không thỏa mãn ĐKXĐ).
Tập nghiệm S = {3}.
d) xác định với x ≤ 1,
xác định với x ≥ 2.
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)
\(\Leftrightarrow x=0\)
b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)
\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )
\(\Leftrightarrow2x^2-5x+3=0\)
\(\Delta=b^2-4ac\)
\(\Delta=1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{2}\)
c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )
\(\Leftrightarrow x^2-4x-2=x-2\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)
Vậy \(x=5\)
d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)
\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )
\(\Leftrightarrow2x^2-x-3=2x-3\)
\(\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm

a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)
Phương tình đã cho trở thành:\(y^2+5+y=y+6\)
\(\Leftrightarrow y^2-1=0\)
\(\Leftrightarrow y=-1;y=1\)
y=-1 loại vì \(\sqrt{x=5}\ge0\)
Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)
b,làm tương tự câu a
c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).
b) Đkxđ: \(\left\{{}\begin{matrix}1-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x=1\).
Thay x = 1 vào phương trình ta có:
\(\sqrt{1-1}+1=\sqrt{1-1}+2\)\(\Leftrightarrow1=2\) (vô lý).
Vậy phương trình vô nghiệm.

a) đkxđ: \(\left\{{}\begin{matrix}2x+1\ge0\\x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\ne0\end{matrix}\right.\)
b) đkxđ: \(2x^2+1\ge0\) (luôn thỏa mãn \(\forall x\in R\) )
c) đkxđ: \(\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>-3\end{matrix}\right.\) \(\Leftrightarrow x>1\)
d) đkxđ: \(\left\{{}\begin{matrix}x^2-4\ne0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ge-1\end{matrix}\right.\)

\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ:\(x\ne2;x\ne-2\)
\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)
\(\Leftrightarrow\)\(9x+18=0\)
\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.
b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)
PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)
\(\Leftrightarrow9x+1=0\)
\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)
c,\(ĐKXĐ:x\ge2\)
Bình phương 2 vế ta được:
\(x^2-4-x^2+2x-1=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
\(x^2-x+2-2\sqrt{x^2-x+1}=0\) (Đk: x ∈ R)
↔ \(x^2-x+1-2\sqrt{x^2-x+1}+1=0\)
↔ \(\left(\sqrt{x^2-x+1}-1\right)^2=0 \)
↔ \(\sqrt{x^2-x+1}=1\)
↔ \(x^2-x+1=1\)
↔ \(x^2-x=0\)
↔ \(x\left(x-1\right)=0\)
↔\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)