\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 6 2021

ĐK: \(\frac{1}{2}\le x\le5\).

Đặt \(\sqrt{5-x}=a,\sqrt{2x-1}=b\).

Ta có hệ phương trình: 

\(\hept{\begin{cases}11a+8b=24+3ab\\2a^2+b^2=9\end{cases}}\Rightarrow\left(2a^2+b^2-9\right)-\left(11a+8b-24-3ab\right)=0\)

\(\Leftrightarrow2a^2+b^2-11a-8b+15+3ab=0\)

\(\Leftrightarrow\left(2a+b-5\right)\left(a+b-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a+b=5\\a+b=3\end{cases}}\)

Với \(2a+b=5\)

\(2\sqrt{5-x}+\sqrt{2x-1}=5\)

\(\Rightarrow4\left(5-x\right)=25+2x-1-10\sqrt{2x-1}\)

\(\Leftrightarrow5\sqrt{2x-1}=3x+2\)

\(\Rightarrow25\left(2x-1\right)=9x^2+12x+4\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{29}{9}\end{cases}}\)

Thử lại đều thỏa mãn. 

Trường hợp còn lại làm tương tự, có thêm nghiệm là \(x=5\).

12 tháng 6 2021

cảm ơn anh ạ

NV
15 tháng 7 2020

Nhìn quen quen, bài giải pt của KHTN mấy hôm trước thì phải

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{5-x}=a\ge0\\\sqrt{2x-1}=b\ge0\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}11a+8b=24+3ab\\2a^2+b^2=9\end{matrix}\right.\)

\(\Rightarrow11a+8b=2a^2+b^2+15+3ab\)

\(\Leftrightarrow2a^2+\left(3b-11\right)a+b^2-8b+15=0\)

\(\Delta=\left(3b-11\right)^2-8\left(b^2-8b+15\right)=\left(b-1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{11-3b-b+1}{2}=6-2b\\a=\frac{11-3b+b-1}{2}=5-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{5-x}=6-2\sqrt{2x-1}\\\sqrt{5-x}=5-\sqrt{2x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5-x}+2\sqrt{2x-1}=6\\\sqrt{5-x}+\sqrt{2x-1}=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\sqrt{\left(5-x\right)\left(2x-1\right)}=35-7x\\2\sqrt{\left(5-x\right)\left(2x-1\right)}=21-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}16\left(5-x\right)\left(2x-1\right)=49\left(5-x\right)^2\\4\left(5-x\right)\left(2x-1\right)=\left(21-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow...\)

28 tháng 2 2021

\(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\)

\(\Leftrightarrow11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{11x-5-2x^2}\)

\(\Leftrightarrow121\left(5-x\right)+176\sqrt{\left(5-x\right)\left(2x-1\right)}+64\left(2x-1\right)=576+144\sqrt{11x-5-2x^2}\)\(+9\left(11x-5-2x^2\right)\)

\(\Leftrightarrow605-121x+176\sqrt{11x-5-2x^2}+128x-64=576+144\sqrt{11x-5-2x^2}\)\(+99x-18x^2\)

\(\Leftrightarrow176\sqrt{11x-5-2x^2}-144\sqrt{11x-5-2x^2}=531+99x-18x^2-541-7x\)

\(\Leftrightarrow32\sqrt{11x-5-2x^2}=-10+92x-18x^2\)

\(\Leftrightarrow16\sqrt{11x-5-2x^2}=-5+46x-9x^2\)

\(\Leftrightarrow256\left(11x-5-2x^2\right)=25+2116x^2+81x^4-460x+90x^2-823x^3\)

\(\Leftrightarrow2816x-1280-512x^2=25+2206x^2+81x^4-460x-823x^3\)

\(\Leftrightarrow9\left(364x-145-302x^2-9x^4+92x^3\right)=0\)

\(\Leftrightarrow-9x^4+92x^3-302x^2+364x-145=0\)

\(\Leftrightarrow-\left(x-1\right)\left(9x^3-83x^2+219x-145\right)=0\)

\(\Leftrightarrow-\left(x-1\right)\left(x-1\right)\left(9x^2-74x+145\right)=0\)

\(\Leftrightarrow-\left(x-1\right)^2\left(9x-29\right)\left(x-5\right)=0\Leftrightarrow\)x=1; x=29/9; x=5

\(\Leftrightarrow11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{11x-5-2x^2}\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt 

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?