Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)
\(\Rightarrow b^4+a^4=2\)
Từ đó ta có: a + b = 2
Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)
Dấu = xảy ra khi a = b = 1
=> x = 1

a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

b)\(\frac{4}{x}+\sqrt{x-\frac{1}{x}}=x+\sqrt{2x-\frac{5}{x}}\)
\(pt\Leftrightarrow\frac{4}{x}+\sqrt{x-\frac{1}{x}}-\sqrt{\frac{3}{2}}=x+\sqrt{2x-\frac{5}{x}}-\sqrt{\frac{3}{2}}\)
\(\Leftrightarrow\left(\frac{4}{x}-x\right)+\frac{x-\frac{1}{x}-\frac{3}{2}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}=\frac{2x-\frac{5}{x}-\frac{3}{2}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\)
\(\Leftrightarrow\frac{-\left(x-2\right)\left(x+2\right)}{x}+\frac{\frac{\left(x-2\right)\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(x-2\right)\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{-\left(x+2\right)}{x}+\frac{\frac{\left(2x+1\right)}{2x}}{\sqrt{x-\frac{1}{x}}+\sqrt{\frac{3}{2}}}-\frac{\frac{\left(4x+5\right)}{2x}}{\sqrt{2x-\frac{5}{x}}+\sqrt{\frac{3}{2}}}\right)=0\)
Pt trong ngoặc VN suy ra x=2
a)\(x^2+3\sqrt{x^2-1}=\sqrt{x^4-x^2+1}\)
\(\Leftrightarrow x^2+3\sqrt{x^2-1}-1=\sqrt{x^4-x^2+1}-1\)
\(\Leftrightarrow\frac{x^2\left(3\sqrt{x^2-1}+1\right)}{3\sqrt{x^2-1}+1}+\frac{9\left(x^2-1\right)-1}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2+1-1}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{9x^2-10+3x^2\sqrt{x^2-1}+x^2}{3\sqrt{x^2-1}+1}=\frac{x^4-x^2}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{x^2-1}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}=\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}\)
\(\Leftrightarrow\frac{\sqrt{\left(x-1\right)\left(x+1\right)}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2\left(x-1\right)\left(x+1\right)}{\sqrt{x^4-x^2+1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{1}{\sqrt{x^2-1}}\left(3x^2+10\sqrt{x^2-1}\right)}{3\sqrt{x^2-1}+1}-\frac{x^2}{\sqrt{x^4-x^2+1}+1}\right)=0\)
pt trong căn vô nghiệm
suy ra x=1; x=-1

5/
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)
Pt trở thành:
\(a-1=\frac{a^2+b^2}{2}-b\)
\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)
4/
ĐKXĐ: \(x\ge\frac{1}{5}\)
\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)
\(\Leftrightarrow x=2\)
\(x^2+2x\sqrt{x-\frac{1}{x}}+3x+1=0\)
ĐK: \(x-\frac{1}{x}\ge0\)
\(+x=0\text{ thì }pt\text{ thành }0=1\text{ (vô lí)}\)
\(+\text{Xét }x\ne0;\text{ }pt\Leftrightarrow x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)+2\sqrt{x-\frac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\frac{1}{x}}=t\ge0;\text{ }pt\text{ thành }t^2+2t-3=0\)
\(c\text{) }x^2+\sqrt[3]{x^4-x^2}=2x+1\)
\(\Leftrightarrow\left(x^2-1\right)-2x+\sqrt[3]{x^2\left(x^2-1\right)}=0\)
Đặt \(\sqrt[3]{x^2-1}=a;\text{ }\sqrt[3]{x}=b\)
\(pt\text{ trở thành }a^3-2b^3+ab^2=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+2b^2\right)=0\)
\(\Leftrightarrow a=b\text{ hoặc }\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\)
\(a=b\text{ thì }\sqrt[3]{x^2-1}=\sqrt[3]{x}\Leftrightarrow x^2-1=x\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
\(\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\Leftrightarrow b=0\text{ và }a+\frac{b}{2}=0\Leftrightarrow a=b=0\)
Suy ra \(\sqrt[3]{x^2-1}=0\text{ và }\sqrt[3]{x}=0\Leftrightarrow x=0\text{ và }x^2-1=0\text{ (vô nghiệm)}\)