Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)
=> 2x=0
=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình
Lời giải :
a) \(x\left(x+2\right)=x\left(x+3\right)\)
\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+2-x-3\right)=0\)
\(\Leftrightarrow x\cdot\left(-1\right)=0\)
\(\Leftrightarrow x=0\)
b) \(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\)
\(\Leftrightarrow x\left(x+1+x-3-4\right)=0\)
\(\Leftrightarrow x\left(2x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy....
a) \(x\left(x+2\right)=x\left(x+3\right)\)
\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left[\left(x+2\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x.\left(-1\right)=0\)
\(\Leftrightarrow x=0\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x=0
<=> x=0
Vậy x=0
+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)
\(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x.\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,6\right\}\)
+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)
\(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+1\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)
<=> \(\frac{7\left(x^2-4x+4\right)}{84}-\frac{4\left(x^2+2x+1\right)}{84}=\frac{3\left(x^2-10x+24\right)}{84}\)
<=> 7x2 - 28x + 28 - 4x2 - 8x - 4 = 3x2 - 30x + 72
<=> 3x^2 - 36x - 3x^2 + 30x = 72 - 24
<=> -6x = 48
<=> x = -8
Vậy S = {-8}
\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+5x+4=4-x^2\Leftrightarrow5x=-2x^2\)
\(\Leftrightarrow-5=2x\Rightarrow x=-2,5\)
Giải :
\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)-\left(2-x\right)\left(2+x\right)=0\)
\(\Leftrightarrow x^2+4x+4-2^2+x^2=0\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x=0 \text{hoặc} 2x+5=0\).
1/ \(x=0\);
2/ \(2x+5=0\Leftrightarrow2x-5\Leftrightarrow x=2,5\).
Vậy tập nghiệm của phương trình đã cho là \(\text{S}=\left\{0;-2,5\right\}\).
Hok tốt !!!
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
<=>x-1+x-2+x-3+x-4=14
<=>4x-(1+2+3+4)=14
<=>4x-10=14
<=>4x=24
<=>x=24/4
<=>x=6
vậy x=6
nhớ lick cho mình nha
\(ĐKXĐ:x\ne1\)
Phương trình đã có 1 nghiệm bằng 2. Ta cần giải phương trình:
\(2x+\frac{1}{x-1}=0\)
\(\Leftrightarrow\frac{2x\left(x-1\right)+1}{x-1}=0\)
\(\Leftrightarrow2x^2-2x+1=0\)
Ta có \(\Delta=2^2-4.2.1=-4< 0\)(vô nghiệm)
Vậy nghiệm duy nhất là 2
Giải :
\(\left(x-2\right)\left(2x+\frac{1}{x-1}\right)=0\)
\(\Leftrightarrow x-2=0\text{ hoặc }2x+\frac{1}{x-1}=0\)
* Trường hợp 1 :
\(x-2=0\Leftrightarrow x=2\)
* Trường hợp 2 :
\(2x+\frac{1}{x-1}=0\) \(\left(\text{ĐKXĐ : }x-1\ne0\Leftrightarrow x\ne1\right)\)
\(\Leftrightarrow\frac{2x\left(x-1\right)}{x-1}+\frac{1}{x-1}=0\)
\(\text{Khử mẫu : }2x\left(x-1\right)+1=0\)
\(\Leftrightarrow2x^2-2x+1=0\)
\(\Leftrightarrow x^2-x+\frac{1}{2}=0\)
\(\Leftrightarrow x^2-x+\frac{1}{4}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{-1}{4}\)
\(\Leftrightarrow x\in\varnothing(\text{vì }\left(x-\frac{1}{2}\right)^2\ge0)\)
Vậy \(S=\left\{2\right\}\).
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(x^2+x=t\)
\(\Rightarrow t\left(t+1\right)=42\)
\(\Leftrightarrow t^2+t-42=0\Rightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)