Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
ĐKXĐ:\(x\ne1\)
\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
\(\Leftrightarrow\frac{x^2+x+1+2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow x^2+3x-1=3x^2\)\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(KTMĐK\right)\\x=\frac{1}{2}\left(TMĐK\right)\end{cases}}}\)
Vậy nghiệm của pt là \(x=\frac{1}{2}\)
\(pt\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2+3x-1}{x^3-1}=\frac{3x^2}{x^3-1}\)
\(\Rightarrow x^2+3x-1=3x^2\Leftrightarrow3x-1=2x^2\Leftrightarrow2x^2-3x+1=0\Leftrightarrow x^2-\frac{3}{2}x+\frac{1}{2}=0\)
đến đây là pt bậc 2
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x=0
<=> x=0
Vậy x=0
+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)
\(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x.\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,6\right\}\)
+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)
\(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
\(\text{GIẢI :}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}\cdot\frac{x-1+2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x\left(x+1\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}-\frac{2}{3}=0\)
\(\Leftrightarrow\frac{3}{3x}-\frac{2x}{3x}=0\)
\(\Rightarrow\text{ }3-2x=0\)
\(\Leftrightarrow\text{ }2x=3\text{ }\Leftrightarrow\text{ }x=\frac{3}{2}\) (thỏa mãn ĐKXĐ)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)\(\left(đk:x\ne0;-1\right)\)
\(< =>\frac{1}{x}.\frac{x-1+2}{x+1}=\frac{2}{3}\)
\(< =>\frac{x+1}{x^2+x}=\frac{2}{3}\)
\(< =>3\left(x+1\right)=2\left(x^2+x\right)\)
\(< =>3x+3=2x^2+2x\)
\(< =>2x^2-x-3=0\)
Ta có : \(\Delta=\left(-1\right)^2-4.\left(2\right).\left(-3\right)=1+24=25\)
Vì delta > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{1+\sqrt{25}}{4}=\frac{1+5}{4}=\frac{3}{2}\)
\(x_2=\frac{1-\sqrt{25}}{4}=\frac{1-5}{4}=\frac{4}{4}=1\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;\frac{3}{2}\right\}\)
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\).
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ne0\right)\)
<=> x=-1
Vậy x=-1
ĐKXĐ \(x\ne0\)
\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\)
=> \(x^2-x=\frac{1}{x}-\frac{1}{x^2}\)
=> \(\frac{x^2-x}{1}=\frac{x^2-x}{x^3}\)
TH1 : x2 - x = 0
=> x(x - 1) = 0
=> \(\orbr{\begin{cases}x=0\left(\text{loại}\right)\\x=1\end{cases}}\Rightarrow x=1\)
TH2 : x2 - x \(\ne0\)
=> x3 = 1
=> x = 1
Vậy x = 1 là nghiệm của phương trình