Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x\sqrt{x-\frac{1}{x}}+3x+1=0\)
ĐK: \(x-\frac{1}{x}\ge0\)
\(+x=0\text{ thì }pt\text{ thành }0=1\text{ (vô lí)}\)
\(+\text{Xét }x\ne0;\text{ }pt\Leftrightarrow x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)+2\sqrt{x-\frac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\frac{1}{x}}=t\ge0;\text{ }pt\text{ thành }t^2+2t-3=0\)
\(c\text{) }x^2+\sqrt[3]{x^4-x^2}=2x+1\)
\(\Leftrightarrow\left(x^2-1\right)-2x+\sqrt[3]{x^2\left(x^2-1\right)}=0\)
Đặt \(\sqrt[3]{x^2-1}=a;\text{ }\sqrt[3]{x}=b\)
\(pt\text{ trở thành }a^3-2b^3+ab^2=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+2b^2\right)=0\)
\(\Leftrightarrow a=b\text{ hoặc }\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\)
\(a=b\text{ thì }\sqrt[3]{x^2-1}=\sqrt[3]{x}\Leftrightarrow x^2-1=x\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
\(\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\Leftrightarrow b=0\text{ và }a+\frac{b}{2}=0\Leftrightarrow a=b=0\)
Suy ra \(\sqrt[3]{x^2-1}=0\text{ và }\sqrt[3]{x}=0\Leftrightarrow x=0\text{ và }x^2-1=0\text{ (vô nghiệm)}\)
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)
ĐKXĐ: Tự tìm nhé.
\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)
Phương trình <=> \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)
(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)
\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)
\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)
\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))
Tự làm tiếp nhé
ĐK: \(x\ge\frac{1}{2}\)
\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)
\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)
\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)
\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)
\(\Leftrightarrow x=2\)( \(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))
KL:...
ĐKXĐ : \(x\ge\dfrac{1}{2}\)
Ta có \(x^7-2=x^2-2\sqrt{2x-1}\)
\(\Leftrightarrow x^2.\left(x^5-1\right)+2.\left(\sqrt{2x-1}-1\right)=0\)
\(\Leftrightarrow x^2.\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)+\dfrac{4.\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x^2.\left(x^4+x^3+x^2+x+1\right)+\dfrac{4}{\sqrt{2x-1}+1}=0\left(1\right)\end{matrix}\right.\)
Kết hợp ĐKXĐ ta dễ thấy phương trình (1) có VT > 0
mà VP = 0
=> (1) vô nghiệm
Tập nghiệm phương trình S = {1}