Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)
\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)
\(x+\frac{29}{5}-\frac{x}{3}=0\)
\(x-\frac{1}{3}x=-\frac{29}{5}\)
\(\frac{2}{3}x=-\frac{29}{5}\)
\(x=-\frac{87}{10}\)
=>0,2x+0,4-0,5x=0,25-0,5x+0,25
=>0,2x+0,4=0,5
=>0,2x=0,1
=>x=1/2
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(\frac{3x+2}{x-1}+\frac{2x-4}{x+2}=5\)
<=> \(\frac{3x+2}{x-1}+\frac{2\left(x-2\right)}{x+2}=5\)
<=> (3x + 2)(x + 2) + 2(x - 2)(x - 1) = 5(x - 1)(x + 2)
<=> 3x2 + 6x + 2x + 4 + 2x2 - 2x - 4x + 4 = 5x2 + 10x - 5x - 10
<=> 5x2 + 2x + 8 = 5x2 + 5x - 10
<=> 5x2 + 2x + 8 - 5x2 = 5x - 10
<=> 2x + 8 = 5x - 10
<=> 2x + 8 - 5x = -10
<=> -3x + 8 = -10
<=> -3x = -10 - 8
<=> -3x = -18
<=> x = 6
Đặt \(\left\{{}\begin{matrix}x+5=a\\x-4=b\end{matrix}\right.\)
\(\Rightarrow a^4+b^4=\left(a+b\right)^4\)
\(\Leftrightarrow a^4+b^4=a^4+b^4+4a^3b+6a^2b^2+4ab^3\)
\(\Leftrightarrow2a^3b+3a^2b^2+2ab^2=0\)
\(\Leftrightarrow ab\left(2a^2+2ab+2b^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ab=0\\2\left(a+\frac{3b}{4}\right)^2+\frac{7b^2}{8}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=0\\b=0\\a=b=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)