Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Phương trình tương đương với \(\left(x^2-2x-1\right)\left(x^2+2x+3\right)=0\leftrightarrow x=1\pm\sqrt{2}.\)
b. Nhân cả hai vế với 3, phương trình tương đương với \(27-27x+9x^2-x^3=2x^3\leftrightarrow\left(3-x\right)^3=2x^3\leftrightarrow3-x=\sqrt[3]{2}x\leftrightarrow x=\frac{3}{1+\sqrt[3]{2}}\leftrightarrow x=\sqrt[3]{4}-\sqrt[3]{2}+1.\)
\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)
\(\Leftrightarrow4x^4+4x^3-20x^2+2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x\left(2x+5\right)+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3-11x^2+2x+1=9x^2\)
\(\Leftrightarrow x=1-\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow x=1+\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow x=-\frac{3}{7}-\frac{\sqrt{7}}{2}\)
\(\Rightarrow x=\frac{\sqrt{7}}{2}=-\frac{3}{2}\)
\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2\left(2x+5\right)+1\right)=9x^2\)
Em kiểm tra lại đề bài nhé!
nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).
\(a,4x^2-25=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(b,2x^2+9x=0\)
\(\Leftrightarrow x\left(2x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{9}{2}\end{matrix}\right.\)
\(c,x^2+x-30=0\)
\(\Leftrightarrow x^2+6x-5x-30=0\)
\(\Leftrightarrow x\left(x+6\right)-5\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(d,2x^2-3x-5=0\)
\(\Leftrightarrow2x^2-5x+2x-5=0\)
\(\Leftrightarrow x\left(2x-5\right)+\left(2x-5\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Câu c;d giải \(\Delta\)
Các câu còn lại là phương trình trùng phương, mình chỉ làm 1 câu thôi. Các câu sau tương tự
a/ \(x^4-2x^2-8=0\left(1\right)\)
Đặt: \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Rightarrow t^2-2t-8=0\)
( a = 1; b = -2; c = -8 )
\(\Delta=b^2-4ac\)
\(=\left(-2\right)^2-4.1.\left(-8\right)\)
\(=36>0\)
\(\sqrt{\Delta}=\sqrt{36}=6\)
Pt có 2 nghiệm phân biệt:
\(t_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-6}{2.1}=-2\left(l\right)\)
\(t_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+6}{2.1}=4\left(n\right)\Rightarrow x^2=4\Leftrightarrow x=2hayx=-2\)
Vậy: S = {-2;2}
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
a) (3x2 – 5x + 1)(x2 – 4) = 0
=> 3x2 – 5x + 1 = 0 => x =
hoặc x2 – 4 = 0 => x = ±2.
b) (2x2 + x – 4)2 – (2x – 1)2 = 0
⇔ (2x2 + x – 4 + 2x – 1)(2x2 + x – 4 – 2x + 1) = 0
⇔ (2x2 + 3x – 5)(2x2 – x – 3) = 0
=> 2x2 + 3x – 5 = 0 hoặc 2x2 – x – 3 = 0
X1 = 1; x2 = -2,5; x3 = -1; x4 = 1,5
Nhớ like nha
please
Bạn tham khảo tại https://books.google.com.vn/books?id=EHpTI8yrM04C&pg=PA26&lpg=PA26&dq=x4%2B9x-1)(3x2%2B2x-2)%3D0&source=bl&ots=z4-KX-Jdlk&sig=ACfU3U1MO5yKPj4GTF41zcv9RmsqsL8-FQ&hl=vi&sa=X&ved=2ahUKEwik-da6qpHoAhXiy4sBHdVtBGMQ6AEwAHoECAYQAQ#v=onepage&q=x4%2B9x-1)(3x2%2B2x-2)%3D0&f=false
~~~Learn Well Đõ Phương Thảo~~~
thank u nha