Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-3x^3-6x+4=0\)
<=>\(\left(x^4+x^3+2x^2\right)-\left(4x^3+4x^2+8x\right)+\left(2x^2+2x+4\right)=0\)
<=>\(x^2\left(x^2+x+2\right)-4x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=0\)
<=>\(\left(x^2+x+2\right)\left(x^2-4x+2\right)=0\)<=>\(\orbr{\begin{cases}x^2+x+2=0\\x^2-4x+2=0\end{cases}}\)
+)\(x^2+x+2=0\)
\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=> ko có x thỏa mãn x2+x+2=0
+)\(x^2-4x+2=0\)
\(x^2-4x+2=x^2-4x+4-2=\left(x-2\right)^2-2=0\)
<=>\(\left(x-2\right)^2=2\)<=>\(\orbr{\begin{cases}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)
Vậy tập nghiệm pt \(S=\left\{2-\sqrt{2};\sqrt{2}+2\right\}\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0
Chia cả 2 vế pt cho x^2 khác 0 ta được :
x^2-3x-6+3/x+1/x^2 = 0
<=> (x^2+1/x^2)-3.(x-1/x)-6 = 0
Đặt x-1/x = a => x^2+1/x^2 = a^2+2
pt trở thành :
a^2+2-3a-6 = 0
<=> a^2-3a-4 = 0
<=> (a^2+a)-(4a+4) = 0
<=> (a+1).(a-4) = 0
<=> a=-1 hoặc a=4
<=> x-1/x = -1 hoặc x-1/x = 4
Đến đó nhân cả 2 vế với x mà tìm x nha
Tk mk nha
x = 0 không là nghiệm của pt.
\(x\ne0\)
\(PT\Leftrightarrow x^2+\frac{1}{x^2}-3x+\frac{3}{x}+6=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2-3\left(x-\frac{1}{x}\right)+8=0\)<=> PT vô nghiệm
a, pt <=> (x^4-4x+4)+(x^2+6x+9) = 0
<=> (x^2-2)^2+(x+3)^2=0
<=> x^2-2=0 và x+3=0
=> pt vô nghiệm
b, pt <=> (x-1).(x^6+x^5+x^4+x^3+x^2+x+1) = 0
<=> x^7+x^6+x^5+x^4+x^3+x^2+x-x^6-x^5-x^4-x^3-x^2-x-1 = 0
<=> x^7-1=0
<=> x^7=1 = 1^7
=> x=1
Tk mk nha
\(=>\frac{8}{2x^2-6x+2}-\frac{3}{2x^2-6x+2}=-1\)
\(=>\frac{5}{2x^2-6x+2}=-1\)
\(=>2x^2-6x+2=-5\)
\(=>2x^2-6x=-7\)
\(=>x.\left(2x-6\right)=-7\)
\(=>2x-6=-\frac{7}{x}\)
\(=>2x=\frac{-7+6x}{x}\)
\(=>3x=-7+6x\)
\(=>-7=-3x\)
\(=>x=\frac{-7}{-3}=\frac{7}{3}\)
E ms lớp 7 nên giải hơi dài thông cảm ạ :>
x4-3x2+6x+13=0
<=> x4-4x2+4+x2+6x+9=0
ta co : x2 - 2 khác x-3
=> phương trình vô nghiệm
Tk mk nha ! m.n.
\(x^4+3x^3+6x+4=0\)
Nhận thấy phương trình không thể có nghiệm không âm vì khi đó \(\hept{\begin{cases}x^4\ge0\\3x^3\ge0\\6x\ge0\end{cases}}\)dẫn đến \(x^4+3x^3+6x+4\ge4>0\)
Do đó điều kiện là \(x< 0\)
Vì \(x\ne0\)nên chia cả 2 vế của phương trình đã cho cho \(x^2\), ta được:
\(x^2+3x+\frac{6}{x}+\frac{4}{x^2}=0\)\(\Leftrightarrow\left(x^2+\frac{4}{x^2}\right)+\left(3x+\frac{6}{x}\right)=0\)\(\Leftrightarrow\left(x^2+\frac{4}{x^2}\right)+3\left(x+\frac{2}{x}\right)=0\)(*)
Đặt \(x+\frac{2}{x}=t\). Vì \(x< 0\)\(\Leftrightarrow\frac{2}{x}< 0\)\(\Leftrightarrow x+\frac{2}{x}< 0\)\(\Leftrightarrow t< 0\)
,ta có \(\left(x+\frac{2}{x}\right)^2=x^2+2x.\frac{2}{x}+\frac{4}{x^2}=x^2+\frac{4}{x^2}+4\)\(\Leftrightarrow x^2+\frac{4}{x^2}=\left(x+\frac{2}{x}\right)^2-4=t^2-4\)
Phương trình (*) trở thành \(t^2-4+3t=0\)\(\Leftrightarrow t^2-t+4t-4=0\)\(\Leftrightarrow t\left(t-1\right)+4\left(t-1\right)=0\)\(\Leftrightarrow\left(t-1\right)\left(t+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\left(loại\right)\\t=-4\left(nhận\right)\end{cases}}\)
\(\Leftrightarrow x+\frac{2}{x}=-4\)\(\Leftrightarrow x+\frac{2}{x}+4=0\)(1)
Mà \(x\ne0\)nên nhân cả 2 vế của phương trình (1) với \(x\), ta có:
\(x^2+4x+2=0\)\(\Leftrightarrow\left(x^2+4x+4\right)-2=0\)\(\Leftrightarrow\left(x+2\right)^2-\left(\sqrt{2}\right)^2=0\)\(\Leftrightarrow\left(x+2+\sqrt{2}\right)\left(x+2-\sqrt{2}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+2+\sqrt{2}=0\\x+2-\sqrt{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2-\sqrt{2}\left(nhận\right)\\x=-2+\sqrt{2}\left(nhận\right)\end{cases}}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-2-\sqrt{2};-2+\sqrt{2}\right\}\)