K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8

Em cần làm gì với biểu thức này em nhỉ?

26 tháng 5 2018

Khai triển rồi thu gọn

19 tháng 9 2019

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.

Lời giải:

Ta có:

$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$

$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$

Mà:

$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$

Do đó: $\text{VT}> x^2+y^2$ (đpcm)

8 tháng 11 2015

câu hỏi tương tự

20 tháng 2 2017

\(\left(\frac{1}{x^2-xy}-\frac{3y^2}{x^4-xy^3}-\frac{y}{x^3+x^2y+xy^2}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x^3-y^3\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right):\frac{x+y}{x^2+xy+y^2}\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\frac{x^2+xy+y^2}{x+y}\)

=\(\left(\frac{x^2+xy+-2y^2-xy+y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right).\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2-y^2}{x\left(x-y\right)}\right).\left(\frac{1}{x+y}\right)\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}=\frac{1}{x}\)

16 tháng 3 2017

Mình vs bạn trùng họ và tên rồi thì phải....!hehe

g: (x+3y)(x-3y+2)

=(x+3y)(x-3y)+2(x+3y)

=x^2-9y^2+2x+6y

h: (x+2y)(x-2y+3)

=(x+2y)(x-2y)+3(x+2y)

=x^2-4y^2+3x+6y

i: (x^2-xy+y^2)(x+y)

=x^3+x^2y-x^2y-xy^2+xy^2+y^3

=x^3+y^3

j: (x+y)(x^2-xy+y^2)=x^3+y^3

k: (5x-2y)(x^2-xy-1)

=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y

=5x^3-5x^2y-5x-2x^2y+2xy^2+2y

=5x^3-7x^2y+2xy^2-5x+2y

l: (x^2y^2-xy+y)(x-y)

=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2

31 tháng 5 2017

\(\left(\dfrac{x^2}{x+y}+y\right).\left(\dfrac{1}{x^2-xy}-\dfrac{3y^3}{x^4-xy^3}-\dfrac{y}{x^3+x^2y+xy^2}\right)\)

\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{1}{x\left(x-y\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(=\left(\dfrac{x^2+xy+y^2}{x+y}\right).\left(\dfrac{x^2+xy+y^2}{x\left(x^3-y^3\right)}-\dfrac{3y^2}{x\left(x^3-y^3\right)}-\dfrac{xy-y^2}{x\left(x^3-y^3\right)}\right)\)

\(=\dfrac{x\left(x^3-y^3\right)}{x^3-xy^2}.\dfrac{x^2+xy+y^2-3y^2-xy+y^2}{x\left(x^3-y^3\right)}\\ =\dfrac{x^2-y^2}{x\left(x^2-y^2\right)}=\dfrac{1}{x}\)

3 tháng 11 2017

a)=(x^2-x-6)-(x^2-x-5)

=x^2-x-6-x^2+x+5

=-1

b)đề bài kì cục