Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
xem lại câu b nha, tại vì trên là 7 dưới -7
Ta có: 5x + 3x2 = 0
<=> x(3x + 5) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)
5(x2 - 2x) = (3 + 5x)(x - 1)
<=> 5x2 - 10x = 5x2 - 2x - 3
<=> 5x2 - 10x - 5x2 + 2x = -3
<=> -8x = -3
<=> x = 3/8 Vậy S = {3/8}
(4x + 3)2 = 4(x - 1)2
<=> (4x + 3)2 - (2x - 2)2 = 0
<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0
<=> (2x + 5)(6x + 1) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\) Vậy S = {-5/3; -1/6}
a) 5x + 3.x2 = 0
<=>x . ( 5 + 3x ) = 0
<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)
Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}
b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )
<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x
<=> -10.x = 3.x - 3-5.x
<=> -10.x = -2.x - 3
<=> -8.x = -3
<=> x = \(\frac{3}{8}\)
Vậy x = \(\frac{3}{8}\)
c) ( 4x + 3 )2 = 4. ( x - 1 )2
<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )
<=> 16.x2+24.x + 9 = 4.x2 -8.x + 4
<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0
<=> 12.x2 + 32.x + 5 = 0
<=> 12.x2 + 30.x + 2.x + 5 = 0
<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0
<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0
<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)
Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
a/ (4x-1)(x-3)-(x-3)(5x+2)=0
<=> (x-3)(4x-1-5x-2)=0
<=> (x-3)(-x-3)=0
<=> x-3=0 hoặc -x-3=0
<=> x=3 hoặc x= -3
b/ (x+6)(3x-1)+ x^2 -36 =0
<=> (x+6)(3x-1) + (x-6)(x+6)=0
<=> (x+6)(3x-1+x-6)=0
<=> (x+6)(4x-7)=0
<=> x+6=o hoặc 4x-7=0
<=> x= -6 hoặc x= 7/4
c/ (x+3)(x+5)+(x+3)(3x-4)=0
<=> (x+3)(x+5+3x-4)=0
<=> (x+3)(4x+1)=0
<=> x+3=0 hoặc 4x+1=0
<=> x= -3 hoặc x=-1/4