\(x^4-3x^3-6x^2+3x+1=0\)0

mình đang cần gấp lắm mn, giúp mình với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có x4-3x3-6x2+3x+1=0 

<=> (x4+x3-x2)-(43+4x2-4x)-(x2+x-1) =0

<=> (x2-4x-1)(x2+x-1) =0 

=> \(^{\orbr{\begin{cases}x^2-4x-1=0\\x^2+x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\pm\sqrt{5}\\x=\pm\frac{\sqrt{5}-1}{2}\end{cases}}}\)

31 tháng 10 2021

ko biết !

29 tháng 7 2017

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

4 tháng 7 2016

= 3-x +4can 3-x +4 +x =13

4căn 3-x = 6

16(3-x) = 36

48-36 = 16x

x = 16/12 = 4/3

4 tháng 7 2016

ôi xl 

x = 12/16 =3/4

12 tháng 9 2018

d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)

Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)

Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)

\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)

Đến đây bạn có thể giải ra tìm x đc

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải 

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................