Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq 0; \frac{-3}{2}; \frac{-1}{2}; -3$
PT $\Leftrightarrow (\frac{1}{x}-\frac{3}{2x+1})+(\frac{5}{2x+3}-\frac{4}{x+3})=0$
$\Leftrightarrow \frac{1-x}{x(2x+1)}+\frac{3-3x}{(2x+3)(x+3)}=0$
$\Leftrightarrow \frac{1-x}{x(2x+1)}+\frac{3(1-x)}{(2x+3)(x+3)}=0$
$\Leftrightarrow (1-x)\left[\frac{1}{x(2x+1)}+\frac{3}{(2x+3)(x+3)}\right]=0$
TH1: $1-x=0\Leftrightarrow x=1$ (tm)
TH2: $\frac{1}{x(2x+1)}+\frac{3}{(2x+3)(x+3)}=0$
$\Rightarrow (2x+3)(x+3)+3x(2x+1)=0$
$\Leftrightarrow 8x^2+12x+9=0$
$\Leftrightarrow (2x+3)^2+4x^2=0$
$\Rightarrow (2x+3)^2=x^2=0$ (vô lý)
Do đó $x=1$ là nghiệm duy nhất.
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4
<=> x^2(3x-2)+2x(3x-2)+(3x-2)= x^3+x^2+x+1
<=>2x^3+3x^2-7x+2=0
<=>(2x^3-2x^2)+(5x^2-5x)+(-2x+2)+0
<=>(x-2)(2x^2+5x-2)=0
TH1 x-2=0 => x=2
TH2 2x^2+5x-2=0 <=>. (x căn2)^2+2*xcăn2*5/4+25/8-41/8=0
<=>(xcăn2+5/(2căn2))^2-(căn41/(2căn2))^2=0
(xcăn2+5/(2căn2)+3/(2căn2))*(xcăn2+5/(2căn2)-căn41/(2căn2))=0
Th2a (xcăn2+5/(2căn2)+căn41/(2căn2))=0
<=> x=(-5-căn41)/4
Th2b (xcăn2+5/(2căn2)-căn41/(2căn2))=0
<=> x=(-5+căn41)/4
TH2b (xcăn2+5/(2căn2)-3/(2căn2))=0
\<=>x=-1/2
Đặt: \(a=x\); \(b=x-1\)
Khi đó phương trình đã cho có dạng:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow\)\(a^3+b^3=a^3+b^3+3ab.\left(a+b\right)\)
\(\Leftrightarrow\)\(3ab.\left(a+b\right)=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=0\\a+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x-1=0\\x+x-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\\x=\frac{1}{2}\end{cases}}\left(TM\right)}\)
Kết luận:....