Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)
Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)
Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)
Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)
Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)
Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}
Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)
Suy ra x = t = h.
Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\)
Vậy phương trình có nghiệm x = 2.
ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có
\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)
\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)
\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)
Do \(a,b\ge0\)nên a+b+1>0
\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)
Sau đó bn tự thay vào rồi giải tiếp nhé
\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\Leftrightarrow x^3-\left(\sqrt[3]{6+\sqrt[3]{x+6}}-2\right)=8\)
\(\Leftrightarrow\left(x^3-8\right)-\frac{\sqrt[3]{x+6}-2}{\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\frac{x-2}{\left(\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4\right)\left(\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4\right)}=0\)
\(\Leftrightarrow x=2.\)
ĐK: \(-3\le x\le6.\)
Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)
Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)
Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)
Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)
Vậy x = 6 hoặc x = -3.
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)
\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)
\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)
\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)
b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)
\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì
\(\Rightarrow b^2-a^2=x^2-3x+2\)
Làm nốt