K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AV
0
NP
0
DK
21 tháng 1 2019
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
DK
21 tháng 1 2019
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
NT
0
Ta có:
\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)
\(\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(\Leftrightarrow x^2=\left(y^2+3y+1-1\right)\left(y^2+3y+1+1\right)\)
\(\Leftrightarrow x^2=\left(y^2+3y+1\right)^2-1\) (1)
Mà \(x^2,\left(y^2+3y+1\right)^2\) là các số chính phương (do x,y\(\in\) Z)
Nên: (1)\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\\left(y^2+3y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}y^2+3y+1=1\\y^2+3y+1=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}y\left(y+3\right)=0\\\left(y^2+y\right)+\left(2y+2\right)=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\\\left(y+1\right)\left(y+2\right)=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Hoàng Thị Ngọc Mai cách đặt của bạn thông minh rồi
nhưng đọn sau không cần đâu bạn
từ x ^2 =0 => x=0
quy về pt đầu
\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=0\) là phương trình tích => y =0;-1;-2;-3