Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ghi thiếu đề bài nên tl lại
`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`
`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`
Áp dụng BĐT bunhia ta có:
`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`
`=>VT<=2sqrt2(1)`
Mặt khác:
`VP=x^2-8x+16+2sqrt2`
`=(x-4)^2+2sqrt2>=2sqrt2`
`=>VP>=2sqrt2(2)`
`(1)(2)=>VT=VP=2sqrt2`
`<=>x=4`
Vậy `S={4}`
Lag tí -.-'
`ĐK:2<=x<=6`
BP 2 vế ta có:
`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`
`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`
`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`
`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`
Đặt `sqrt{-x^2+8x-12}=a(a>=0)`
`pt<=>a^2+2a-8=0`
`<=>a=2(tm),a=-4(l)`
`<=>-x^2+8x-12=4`
`<=>x^2-8x+16=0`
`<=>(x-4)^2=0<=>x=4(tmđk)`
Vậy `S={4}`
ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
Ta có:
\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
Dấu "=" xảy ra khi và chỉ khi:
\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)
Vậy nghiệm của pt là \(x\ge8\)
\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)
\(ĐKXĐ:2\le x\le6\)
Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)
\(\text{=}\sqrt{\left(x-4\right)^2+8}\)
\(\Rightarrow VP\ge\sqrt{8}\)
Xét VT của pt ta có :
\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Áp dụng BĐT cô si cho 2 số không âm ta có :
\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)
\(\text{=}x-2+6-x\text{=}4\)
\(\Rightarrow VT^2\le8\)
\(\Rightarrow VT\le\sqrt{8}\)
Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy...........
a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)
=>3<=x<=5
\(\sqrt{x-3}+\sqrt{5-x}=2\)
=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)
=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)
=>x-4=0
=>x=4
=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)
<=> \(x^2-13x+4=0\)
........
\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)
\(< =>x^2-13x-14=0\)
\(< =>\left(x+1\right)\left(x-14\right)=0\)
..............
ĐKXĐ: $x \geq 2$
\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)
Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)
Vậy....
ĐK: x>=2
đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)
=> pt đã cho <=> \(\left(t^2+2\right)^2+t^2+2+6t-54=0\Leftrightarrow t^4+4t^2+4+t^2+6t-52=t^4+5t^2+6t-48=0\)
\(t^4-2t^3+2t^3-4t^2+9t^2-18t+24t-48=0\Leftrightarrow t^3\left(t-2\right)+2t^2\left(t-2\right)+9t\left(t-2\right)+24\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2+9t+24\right)=0\Leftrightarrow t=2;\left(t^3+2t^2+9t+24\right)=0\). cái pt đằng sau hình như là vô nghiệm. nếu muốn bạn có ngồi tách nha. mình giải cần này rồi thì cho đúng nha
có ai giúp mình với