K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2015

ĐK: x>=2

đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)

=> pt đã cho <=> \(\left(t^2+2\right)^2+t^2+2+6t-54=0\Leftrightarrow t^4+4t^2+4+t^2+6t-52=t^4+5t^2+6t-48=0\)

\(t^4-2t^3+2t^3-4t^2+9t^2-18t+24t-48=0\Leftrightarrow t^3\left(t-2\right)+2t^2\left(t-2\right)+9t\left(t-2\right)+24\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2+9t+24\right)=0\Leftrightarrow t=2;\left(t^3+2t^2+9t+24\right)=0\). cái pt đằng sau hình như là vô nghiệm. nếu muốn bạn có ngồi tách nha. mình giải cần này rồi thì cho đúng nha

14 tháng 6 2015

có ai giúp mình với

25 tháng 5 2021

Ghi thiếu đề bài nên tl lại oho

`sqrt{x-2}+sqrt{6-x}=x^2-8x+16+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

25 tháng 5 2021

`sqrt{x-2}+sqrt{6-x}=x^2-8x+2sqrt2`

Áp dụng BĐT bunhia ta có:

`sqrt{x-2}+sqrt{6-x}<=sqrt{(1+1)(x-2+6-x)}=2sqrt2`

`=>VT<=2sqrt2(1)`

Mặt khác:

`VP=x^2-8x+16+2sqrt2`

`=(x-4)^2+2sqrt2>=2sqrt2`

`=>VP>=2sqrt2(2)`

`(1)(2)=>VT=VP=2sqrt2`

`<=>x=4`

Vậy `S={4}`

28 tháng 6 2021

Lag tí -.-'

`ĐK:2<=x<=6`

BP 2 vế ta có:

`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`

`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`

`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`

`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`

`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`

Đặt `sqrt{-x^2+8x-12}=a(a>=0)`

`pt<=>a^2+2a-8=0`

`<=>a=2(tm),a=-4(l)`

`<=>-x^2+8x-12=4`

`<=>x^2-8x+16=0`

`<=>(x-4)^2=0<=>x=4(tmđk)`

Vậy `S={4}`

Học giỏi vậy bạn? $x^2-8x+24=(x-2).(x-6)$ ?? Well =)))

NV
13 tháng 8 2021

ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Ta có:

\(\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-3\right|\ge\left|\sqrt{x+1}+1+\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

Dấu "=" xảy ra khi và chỉ khi:

\(\sqrt{x+1}-3\ge0\Rightarrow x\ge8\)

Vậy nghiệm của pt là \(x\ge8\)

13 tháng 9 2023

\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)

\(ĐKXĐ:2\le x\le6\)

Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)

\(\text{=}\sqrt{\left(x-4\right)^2+8}\)

\(\Rightarrow VP\ge\sqrt{8}\)

Xét VT của pt ta có :

\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Áp dụng BĐT cô si cho 2 số không âm ta có :

\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)

\(\text{=}x-2+6-x\text{=}4\)

\(\Rightarrow VT^2\le8\)

\(\Rightarrow VT\le\sqrt{8}\)

Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)

\(\Leftrightarrow x=4\left(TM\right)\)

Vậy...........

28 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

31 tháng 10 2021

=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)

<=> \(x^2-13x+4=0\)

........

 

31 tháng 10 2021

\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)

\(< =>x^2-13x-14=0\)

\(< =>\left(x+1\right)\left(x-14\right)=0\)

..............

30 tháng 7 2021

ĐKXĐ: $x \geq 2$

\(\Leftrightarrow2\left(x-4\right).\sqrt{x-2}-2\left(x-4\right)+\left(x-2\right)\sqrt{x+1}-2\left(x-2\right)+6x-18=0\\ \Leftrightarrow2.\left(x-4\right).\dfrac{x-3}{\sqrt{x-2}+1}+\left(x-2\right).\dfrac{x-3}{\sqrt{x+1}+2}+6.\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=0\right)\\ \Leftrightarrow x=3\)

Vì \(\dfrac{2.\left(x-4\right)}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+6=\dfrac{2\left(x-4\right)+4.\sqrt{x-2}+4}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2\\ =\dfrac{2\left(x-2\right)+4.\sqrt{x-2}}{\sqrt{x-2}+1}+\dfrac{x-2}{\sqrt{x+1}+2}+2>0\)

Vậy....