Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(16-x\sqrt{3}\right)^2=4\left(12-x\right)^2\)
\(\Leftrightarrow x^2+256-32\sqrt{3}x+3x^2=4\left(144-24x+x^2\right)\)
\(\Leftrightarrow4x^2-32\sqrt{3}x+256=576-96x+4x^2\)
\(\Leftrightarrow4x^2-4x^2-32\sqrt{3}x+96x+256-576=0\)
\(\Leftrightarrow\left(96-32\sqrt{3}\right)x-320=0\)
\(\Leftrightarrow\left(96-32\sqrt{3}\right)x=320\)
\(\Leftrightarrow x=\frac{320}{96-32\sqrt{3}}=\frac{15+5\sqrt{3}}{3}\)
Lời giải:
PT \(\Leftrightarrow [(x-5)(x-8)][(x-4)(x-10)]=72x^2\)
\(\Leftrightarrow (x^2-13x+40)(x^2-14x+40)=72x^2\)
Đặt \(x^2-13x+40=a\) thì pt trở thành:
\(a(a-x)=72x^2\)
\(\Leftrightarrow a^2-ax-72x^2=0\)
\(\Leftrightarrow a^2-9ax+8ax-72x^2=0\)
\(\Leftrightarrow a(a-9x)+8x(a-9x)=0\)
\(\Leftrightarrow (a-9x)(a+8x)=0\)
Nếu $a-9x=0$
\(\Leftrightarrow x^2-13x+40-9x=0\)
\(\Leftrightarrow x^2-22x+40=0\)
\(\Leftrightarrow (x-2)(x-20)=0\Rightarrow \left[\begin{matrix} x=2\\ x=20\end{matrix}\right.\)
Nếu $a+8x=0$
\(\Leftrightarrow x^2-13x+40+8x=0\)
\(\Leftrightarrow x^2-5x+40=0\Leftrightarrow (x-\frac{5}{2})^2=-\frac{135}{4}\) (vô lý)
Vậy........
ĐKXĐ:...
\(x^2+\frac{36}{x^2}-4\left(x-\frac{6}{x}\right)-17=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow a^2=x^2+\frac{36}{x^2}-12\Rightarrow x^2+\frac{36}{x^2}=a^2+12\)
\(a^2+12-4a-17=0\)
\(\Leftrightarrow a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=-1\\x-\frac{6}{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-6=0\\x^2-5x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5\right)=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+5=5\\x^2+5x+5=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2=-\frac{15}{4}\left(VL\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) ( TM )
PT ⇒ \(2\left(x^2-4x+5\right)-3\sqrt{x^2-4x+5}=22\)
Đặt \(\sqrt{x^2-4x+5}=y>0\), ta có:
\(2y^2-3y-22=0\) \(\Rightarrow y=\frac{3\pm\sqrt{185}}{4}\)
Số xấu quá, ko muốn giải nữa :D
Có vẻ phương trình có 4 nghiệm
Viết đủ đề bài ra đi bạn, đề bài toàn thiếu vế phải
= 4x2 nữa nhé. Mình quên , hihi