K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

ĐKXĐ : \(\forall x\)

Ta có : \(\dfrac{x^2}{x^2+2x+2}+\dfrac{x^2}{x^2-2x+2}-\dfrac{4\left(x^2-5\right)}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{x^2\left(x^2-2x+2\right)+x^2\left(x^2+2x+2\right)-4\left(x^2-5\right)}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{2x^4+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow65\left(2x^4+20\right)=322\left(x^4+4\right)\)

\(\Leftrightarrow130x^4+1300=322x^4+1288\)

\(\Leftrightarrow192x^4-12=0\)

\(\Leftrightarrow x^4=\dfrac{12}{192}\)

\(\Leftrightarrow x^4=\dfrac{1}{16}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

NV
16 tháng 2 2019

\(\dfrac{x^2}{x^2+2x+2}+\dfrac{x^2}{x^2-2x+2}-\dfrac{4\left(x^2-5\right)}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow x^2\left(\dfrac{1}{x^2+2+2x}+\dfrac{1}{x^2+2-2x}\right)-\dfrac{4\left(x^2-5\right)}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow x^2\left(\dfrac{2x^2+4}{x^4+4}\right)-\dfrac{4\left(x^2-5\right)}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{2x^4+4x^2-4x^2+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{2x^4+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow65x^4+650=161x^4+644\)

\(\Leftrightarrow96x^4=6\)

\(\Leftrightarrow x^4=\dfrac{1}{16}\)

\(\Rightarrow x=\pm\dfrac{1}{2}\)

14 tháng 2 2018

\(ĐKXĐ:\)   \(\forall x\in Z\)

              \(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{x^2\left(x^2-2x+2\right)}{\left(x^2+2x+2\right)\left(x^2-2x+2\right)}+\frac{x^2\left(x^2+2x+2\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}-\frac{4\left(x^2-5\right)}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=\frac{322}{65}\)

\(\Leftrightarrow\)\(\frac{2x^4+10}{x^4+4}=\frac{322}{65}\)

\(\Rightarrow\)\(65\left(2x^4+10\right)=322\left(x^4+4\right)\)

\(\Leftrightarrow\)\(130x^4+650=322x^4+1288\)

\(\Leftrightarrow\)\(192x^4=-638\)  (vô lý)

Vậy pt vô nghiệm

P/S:mk lm bừa thôi, đúng thì you tham khảo, sai thì báo mk biết nha

\(\Leftrightarrow\dfrac{x^4-2x^3+2x^2+x^4+2x^3+2x^2-4x^2+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow\dfrac{2x^4+20}{x^4+4}=\dfrac{322}{65}\)

\(\Leftrightarrow130x^4+1300=322x^4+1288\)

\(\Leftrightarrow-192x^4=-12\)

\(\Leftrightarrow x^4=\dfrac{1}{16}\)

=>x=1/2 hoặc x=-1/2

15 tháng 6 2019

a/ \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)

<=> \(\frac{\left(x+1\right)^2}{\left(x+1\right)^2+1}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2+2}=\frac{7}{6}\left(1\right)\)

đặt \(\left(x+1\right)^2=a\left(a>0\right)\)

=> \(\left(1\right)\)<=> \(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)

<=> \(\frac{a\left(a+2\right)+\left(a+1\right)^2}{\left(a+1\right)\left(a+2\right)}=\frac{7}{6}\)

<=> \(\frac{2a^2+4a+1}{a^2+3a+2}=\frac{7}{6}\)

<=> \(6\left(2a^2+4a+1\right)=7\left(a^2+3a+2\right)\)

<=> \(5a^2+3a-8=0\)

<=> \(5a^2-5a+8a-8=0\)

<=>  \(\left(5a+8\right)\left(a-1\right)=0\)

<=> \(a=\frac{-8}{5}\left(h\right)a=1\)

mà \(a>0\)

=> \(a=1\)

=> \(\left(x+1\right)^2=1\)

=> \(x+1=1\left(h\right)x+1=-1\)

=> \(x=0\left(h\right)x=-2\)

vậy  ......

chúc bn học tốt

15 tháng 6 2019

Xét x = 0 và x = -2 , thay vào ta được \(VT=VP\)

Xét x > 0 : 

\(VT=\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}\)

\(=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{7}{6}=VP\) ( loại ) 

Xét x < -2 : 

\(VT=2-\left(\frac{1}{x\left(x+2\right)+2}+\frac{1}{x\left(x+2\right)+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{6}=VP\) ( loại ) 

Xét -2 < x < 0 : 

\(VT=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{-2}+1\right)=\frac{3}{2}>\frac{7}{6}=VP\) ( loại ) 

Vậy ... 

12 tháng 5 2018

bt2.

A=[2(4x^2+4x+5)-2]/(4x^2+4x+5)

=2-2/[(4x+1)^2+4]

A>=2-2/4=3/2

khi x=-1/4

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)