\(x^2+x+2-2\sqrt{x+1}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

Answer:

\(x^2+x+2-2\sqrt{x+1}=0\left(ĐK:x\ge-1\right)\)

\(\Leftrightarrow x^2+x+1-2\sqrt{x+1}+1=0\)

\(\Leftrightarrow x^2+\left(\sqrt{x+1}+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left(\sqrt{x+1}+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\\sqrt{x+1}+1=0\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=0\\\sqrt{x+1}=-1\text{(Loại)}\end{cases}}\)  

6 tháng 7 2017

Ta có : (x + 1)(x + 2)(x + 3)(x + 4) = 3x2

=> [(x + 1)(x + 4)][(x + 2)(x + 3)] = 3x2

=> (x2 + 5x + 4) (x2 + 5x + 6) = 3x2

Đặt x2 + 5x + 5 = a 

Thay vào biểu thức ta có : (a - 1)(a + 1) = 3x2

<=> a2 - 1 = 3a2

<=> (x+ 5x + 5)2 = 3x2

<=> x4 + 10x2 + 15 = 3x2

=> x+ 10x2 + 15 - 3x2 = 0

<=> x4 + 7x2 + 15 = 0

<=> (x2 + 3,5)2 + 2,75 = 0

=> sai đề 

7 tháng 7 2018

a)

\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)

Không có giá trị nào của x nghiệm đúng phương trình.

Do đó phương trình vô nghiệm.

7 tháng 7 2018

b) ĐKXĐ \(x\le3\)

\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.

Tậm nghiệm S = {1}

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????

21 tháng 8 2018

\(x^3+2\sqrt{2}x^2+2x=0\)

\(x\left(x^2+2\sqrt{2}x+2\right)=0\)

\(x\left[x^2+2\sqrt{2}x+\left(\sqrt{2}\right)^2\right]=0\)

\(x\left(x+\sqrt{2}\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\left(x+\sqrt{2}\right)^2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)

Vậy ....

21 tháng 8 2018

\(x^3+2\sqrt{2}x^2+2x=0\)

\(x\left(x^2+2\sqrt{2}x+2\right)=0\)

\(x\left(x+\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+\sqrt{2}\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)

Vậy \(s=\left\{0;-\sqrt{2}\right\}\)

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm

6 tháng 10 2016


Ta có: \(x^2+4\left(\sqrt{1-x}+\sqrt{x+1}\right)-8=0\)
  \(\Leftrightarrow-\left(x-1\right)\left(x+1\right)+4\left(\sqrt{1-x}+\sqrt{1+x}\right)-7\)
Đặt \(a=\sqrt{1-x}+\sqrt{1+x}\Rightarrow\left(1-x\right)\left(1+x\right)=\left(\frac{a^2-2}{2}\right)^2\). Khi đó phương trình trở thành:
\(-\left(\frac{a^2-2}{2}\right)^2-4a+7=0\)
\(\Leftrightarrow-a^4+4a^2-16a-32=0\)\(\Leftrightarrow\left(a-2\right)\left(-a^3-2a^2+16\right)=0\)
\(\Leftrightarrow a=2\).
Các bạn làm tiếp nhé, đoạn cuối phân tích đa thức thành nhân tử thì bài làm sẽ hợp lý hơn. Ở đây hơi vội nên mình bấm máy tính.

6 tháng 10 2016

x=0 ( cốc cốc toán học)