Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) \(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|\)
\(=x-4+x-4\left(x>4\right)=2x-8\)
d) \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
e) \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}=\dfrac{\left(x+\sqrt{2}\right)^2}{x+\sqrt{2}}=x+\sqrt{2}\)
g) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)
=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)
<=> \(x^2-13x+4=0\)
........
\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)
\(< =>x^2-13x-14=0\)
\(< =>\left(x+1\right)\left(x-14\right)=0\)
..............
`B=sqrtx/(sqrtx+3)+(2sqrtx)/(\sqrtx-3)-(3x+9)/(x-9)(x>0,x ne 9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`P=A.B=3/x`
`Px+3\sqrt{x-5}=x-2sqrtx+7(x>=5)`
`<=>3+3\sqrt{x-5}=x-2sqrtx+7`
`<=>x-2sqrtx+4-3\sqrt{x-5}=0`
`<=>2x-4sqrtx+8-6sqrt{x-5}=0`
`<=>x-4sqrtx+4+x-5-6sqrt{x-5}+9=0`
`<=>(sqrtx-2)^2+(\sqrt{x-5}-3)^2=0`
Dấu "=" xảy ra khi $\begin{cases}x=4\\x=14\\\end{cases}(l)$
Vậy khong có giá trị của x thể pt có nghiệm
`sqrt{x^2-25}-6=3sqrt{x+5}-2sqrt{x-5}(x>=5)`
`<=>sqrt{(x-5)(x+5)}+2sqrt{x-5}=3sqrt{x+5}+6`
`<=>sqrt{x-5}(sqrt{x+5}+2)=3(sqrt{x+5}+2)`
`<=>(sqrt{x+5}+2)(sqrt{x-5}-3)=0`
Vì `sqrt{x+5}+2>0`
`<=>sqrt{x-5}-3=0`
`<=>sqrt{x-5}=3`
`<=>x-5=9<=>x=14(tm)`
Vậy `x=14`
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\\ \Leftrightarrow\sqrt{\left(x-5\right)\left(x+5\right)}-6-3\sqrt{x+5}+2\sqrt{x-5}=0\\ \Leftrightarrow\left(2\sqrt{x-5}+\sqrt{\left(x-5\right)\left(x+5\right)}\right)-\left(3\sqrt{x+5}+6\right)=0\Leftrightarrow\sqrt{x-5}\left(2+\sqrt{x+5}\right)-3\left(2+\sqrt{x+5}\right)=0\\ \Leftrightarrow\left(\sqrt{x-5}-3\right)\left(2+\sqrt{x-5}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-5}=3\\\sqrt{x-5}=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=9\\x\in\varnothing\end{matrix}\right.\Leftrightarrow x=14\)
lập bảng xét dấu
x -3 2
x-2 - | - 0 +
x+3 - 0 + | +
Xét khoảng x<=3
=> |x-2|+|x+3|=5 <=> -x+2-x-3=5
<=> -3 (TM)
Xét khoảng -3<x<=2
=> |x-2|+|x+3|=5 <=> -x+2+x+3=5
<=> 0x=0 <=> x=-2;-1;0;1;2
Xét khoảng x>2
=> |x-2|+|x+3|=5 <=> x-2+x+3 =5
<=> x=0 (ko thỏa mãn)
Vậy X= -3;-2;-1;0;1;2
a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)
=>3<=x<=5
\(\sqrt{x-3}+\sqrt{5-x}=2\)
=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)
=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)
=>x-4=0
=>x=4
\(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}=\dfrac{-6}{x-2}\)
=>(x+2)(x-2)+3(x-5)(x-2)=-6(x-5)
=>x^2-4+3x^2-21x+30+6x-30=0
=>4x^2-15x-4=0
=>4x^2-16x+x-4=0
=>(x-4)(4x+1)=0
=>x=-1/4 hoặc x=4