K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

\(x^2=\left(x-1\right)\left(3x-2\right)\)

\(\Leftrightarrow x^2=3x^2-5x+3\)

\(\Leftrightarrow2x^2-5x=-3\)

\(x\left(2x-5\right)=-3\)

->Lập bảng->tìm x

25 tháng 5 2018

Ta có: \(x^2=\left(x-1\right)\left(3x-2\right)\)

  \(=3x^2-5x+2\)

\(\Rightarrow3x^2-5x+2-x^2=0\)

\(\Rightarrow2x^2-5x+2=0\)

\(\Rightarrow2\left(x^2-\frac{5}{2}x+1\right)=0\)

\(\Rightarrow x^2-\frac{5}{2}x+1=0\)

\(\Rightarrow x^2-2.\frac{5}{4}x+\left(\frac{5}{4}\right)^2-\frac{9}{16}=0\)

\(\Rightarrow\left(x-\frac{5}{4}\right)^2=\frac{9}{16}\)

\(\Rightarrow x-\frac{5}{4}=\frac{3}{4}\)hoặc \(x-\frac{5}{4}=-\frac{3}{4}\)

\(\Rightarrow x=2\)    hoặc \(x=\frac{1}{2}\)

Nhớ vs kb với tớ nhia mn! > < ))

2 tháng 8 2018

\(\left(2x-x_{ }^2\right)\left(2x^2-3x-2\right)=0\)

\(\Leftrightarrow x\left(2-x\right)\left[\left(x-2\right)\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

         2x + 1 = 0                    x = - 1/ 2

2 tháng 8 2018

Làm thế nào để ra  [(x−2)(2x+1)]=0 vậy bạn?

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

2 tháng 3 2016

thu gọn ta dc phân thức có mẫu là x^3

nên chỉ phân tích tử 

2 tháng 3 2016

nhưng em phân tích k ra

10 tháng 4 2021

a) x^2 - 3x + 2 = 0

\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)

=> pt có 2 nghiệm pb

\(x_1=\frac{-\left(-3\right)+1}{2}=2\)

\(x_2=\frac{-\left(-3\right)-1}{2}=1\)

10 tháng 4 2021

a) Dễ thấy phương trình có a + b + c = 0 

nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2

b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)

Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3

Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2

Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )

29 tháng 5 2015

a) a = 3; b = - 5 ; c = 2 => a + b + c = 0

=> PT có  nghiệm là x = 1 ; và x = c/a = 2/3

b) từ PT thứ hai => x = -5y. thế x = -5y vào PT thứ nhất

=> 3.(-5y) - 4y = 1 <=> -15y - 4y = 1 <=> -19y = 1 <=> y = \(-\frac{1}{19}\) => x = (-5).(\(-\frac{1}{19}\)) = \(\frac{5}{19}\)

Vậy nghiệm của hệ là: (x;y) = (\(\frac{5}{19}\); \(-\frac{1}{19}\) )

 

3 tháng 2 2016

Ta có: a=3; b= -5; c= 2

Δ=b^2 - 4ac = -5^2 - 4.3.2

                     = 25 - 24 = 1
Vì Δ > 0 nên pt có 2 nghiệm phân biệt

 \(x_1=\frac{5-\sqrt[]{1}}{2.3}\) = \(\frac{2}{3}\)

\(X_2=_{ }\frac{5+\sqrt{1}}{2.3}\) =1

 

29 tháng 6 2018

Đặt \(\sqrt{x^2+x+2}=a\left(a>0\right)\)

Ta có pt \(\Leftrightarrow a^2+2x+6=\left(x+5\right)a\Leftrightarrow a^2-\left(x+5\right)a+2x+6=0\)

<=>\(a^2-2a-\left(x+3\right)a+2\left(x+3\right)=0\Leftrightarrow a\left(a-2\right)-\left(x+3\right)\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-x-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\a=x+3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+x+2=4\\x^2+x+2=x^2+6x+9\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\\5x=-7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1orx=-2\\x=\frac{-7}{5}\end{cases}}}\)

^_^