\(x2\sqrt{\sqrt{ }22\sqrt{ }\sqrt{ }\sqrt{ }}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

12 tháng 10 2018

ĐKXĐ x>0

Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được

\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)

\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)

Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành

\(2a^2+10+a=\sqrt{65a^2+104}\)

\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)

Đến đây bn tự giải tiếp nhé

20 tháng 10 2017

Trần Hữu Ngọc Minh xem tôi làm có đúng ko?

Giải:

a, \(\sqrt{2}.x-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)

\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)

\(\Leftrightarrow x=5\)

c, \(\sqrt{3}.x^2-\sqrt{12}=0\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)

\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)

\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)

\(\Leftrightarrow x^2=\sqrt{100}\)

\(\Leftrightarrow x=\pm10\)

20 tháng 10 2017

giỏi đấy

16 tháng 10 2019

\(đk:x\ge\frac{-3}{2}\)

\(\sqrt{8x+13+4\sqrt{2x+3}}+\sqrt{2x+7-4\sqrt{2x+3}}=9\)

\(\Leftrightarrow\sqrt{4\left(2x+3\right)+4\sqrt{2x+3}+1}+\sqrt{2x+3-4\sqrt{2x+3}+4}=9\)

\(\Leftrightarrow\sqrt{\left(2\sqrt{2x+3}+1\right)^2}+\sqrt{\left(\sqrt{2x+3}+2\right)^2}=9\)

\(\Leftrightarrow|2\sqrt{2x+3}+1|+|\sqrt{2x+3}+2|=9\Leftrightarrow3\sqrt{2x+3}=6\Leftrightarrow\sqrt{2x+3}=2\Leftrightarrow2x+3=4\)

\(\Leftrightarrow x=\frac{1}{2}\left(\text{thỏa mãn}\right)\)