K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)

\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)

Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm

Vậy PT có nghiệm duy nhất \(x=1\)

NV
26 tháng 12 2020

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

NV
20 tháng 8 2021

a.

ĐKXĐ: \(x^2+2x-1\ge0\)

\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

Đặt \(\sqrt{x^2+2x-1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-1\pm\sqrt{6}\)

NV
20 tháng 8 2021

b.

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)

\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)

a) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)

     \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)

     \(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)

     \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)

  Vậy ...

      

17 tháng 6 2021

cảm ơn bạn

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

15 tháng 10 2019

dk \(x\ge0;2x+1\ge0< =>x\ge0\)

2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)

\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>

2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc

\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)

x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\)   hay 5x- 3<2 <=> x<1( vô lý)

x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)

x=1 thỏa mãn

vậy pt có nghiệm duy nhất x=1

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)