Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
a) \(5x-3=7\)
\(\Leftrightarrow5x=7+3\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=\dfrac{10}{5}\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b) \(\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-4=0\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
*) \(x-4=0\)
\(x=0+4\)
\(x=4\)
Vậy \(S=\left\{-3;4\right\}\)
c) \(\left|x^2+2014\right|=1\)
\(\Leftrightarrow x^2+2014=1\) hoặc \(x^2+2014=-1\)
*) \(x^2+2014=1\)
\(\Leftrightarrow x^2=1-2014\)
\(\Leftrightarrow x^2=-2013\) (vô lý)
*) \(x^2+2014=-1\)
\(\Leftrightarrow x^2=-1-2014\)
\(\Leftrightarrow x^2=-2015\) (vô lý)
Vậy \(S=\varnothing\)
d) \(\dfrac{2}{x+1}-\dfrac{1}{x-3}=\dfrac{3x-11}{x^2-2x-3}\) (1)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(1\right)\Leftrightarrow2\left(x-3\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-6-x-1=3x-11\)
\(\Leftrightarrow-2x=-11+7\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(S=\left\{2\right\}\)
a) 2x-(3x-5x)=4(x+3)
2x - 3x + 5x = 4x +12
4x = 4x + 12
0x= 12 => ko có giá trị nào của x thỏa mãn( cái kết luận này mik ko bik đúng hay sai)
b) 5(x-3)-4=2(x-1)+7
5x-15 - 4 = 2x-2 + 7
5x-19 = 2x+5
5x-2x = 5+19
3x = 24
x= 8
c) 4(x+3)=-7X+17
4x +12 = -7x + 17
4x+7x = 17-12
11x = 5
x = 5/11
1) 2x - (3x -5x) = 4(x+3)
\(\Leftrightarrow\)2x +2x = 4x +12
\(\Leftrightarrow\)4x = 4x +12
\(\Leftrightarrow\)0x = 12
Vậy phương trình đã cho vô nghiệm
2) 5(x-3) - 4 = 2(x-1) +7
\(\Leftrightarrow\)5x - 15 - 4 = 2x - 2 +7
\(\Leftrightarrow\) 5x - 1 = 2x +5
\(\Leftrightarrow\) 5x - 2x = 5 +1
\(\Leftrightarrow\) 3x = 6
\(\Leftrightarrow\) x = 2
Vậy tập nghiệm của phương trình là S= {2}
3) 4(x + 3) = -7x + 17
\(\Leftrightarrow\)4x + 12 = -7x +17
\(\Leftrightarrow\)4x + 7x = 17 - 12
\(\Leftrightarrow\) 11x = 5
\(\Leftrightarrow\) x = \(\frac{5}{11}\)
Vậy tập nghiệm của phương trình là S={ \(\frac{5}{11}\)}
a: \(\dfrac{2x-1}{3}-\dfrac{5x+2}{7}=x+13\)
\(\Leftrightarrow21\left(x+13\right)=7\left(2x-1\right)-3\left(5x+2\right)\)
\(\Leftrightarrow21x+273=14x-7-15x-6=-x-13\)
=>22x=-286
hay x=-13
b: \(\dfrac{2x-3}{3}-\dfrac{x-3}{6}=\dfrac{4x+3}{5}-17\)
\(\Leftrightarrow10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
\(\Leftrightarrow20x-30-5x+15=24x+18-510\)
\(\Leftrightarrow15x-15=24x-492\)
=>-9x=-477
hay x=53
1)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)
\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+6\) ta có:
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)
\(\Leftrightarrow a^2+a-2-40=0\)
\(\Leftrightarrow a^2-6x+7x-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))
Vậy.................
3)
\(\left|x+4\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)
Vậy..........
Đặt \(x^2+2x+3=a\ge2\)
\(\left(a+1\right)a=a+4\)
\(\Leftrightarrow a^2=4\)
\(\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+2x+3=2\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)