Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. `|x + 1| + |2x - 3| = |3x - 2|`
Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)
Vậy phương trình có vô số nghiệm.
a)
\(\Leftrightarrow3x^2-3x+2x-2=0\)
\(\Leftrightarrow3x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\)
Tới đây cho mỗi cái = 0 rồi tìm x
b)
\(\Leftrightarrow2x^2+4x=6x^2+12x-2x-4\)
\(\Leftrightarrow2x^2+4x-6x^2-12x+2x+4=0\)
\(\Leftrightarrow-4x^2-6x+4=0\)
\(\Leftrightarrow-4x^2+2x-8x+4=0\)
\(\Leftrightarrow-2x\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-2x-4\right)=0\)
Tới đây cũng cho mỗi cái = 0 và tìm x
a, 3x ( x - 1 ) + 2 ( x - 1 ) = 0
<=> ( x - 1 ) ( 3x + 2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0+1=1\\3x=-2\Rightarrow x=\frac{-2}{3}\end{cases}}}\)
Vậy ...
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
a) \(||2x-3|-4x|=5\)
TH1: \(|2x-3|-4x=5\)
\(\Leftrightarrow|2x-3|=5+4x\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5+4x\\2x-3=-5-4x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4x=5+3\\2x+4x=-5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=8\\6x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{-1}{3}\end{cases}}\)
TH2: \(|2x-3|-4x=-5\)
\(\Leftrightarrow|2x-3|=-5-4x\)<0 ( loại )
Vậy \(x\in\left\{-4;\frac{-1}{3}\right\}\)
PT<=>\(2x^2-5x+3-3x\left(\sqrt{x+3}-2\right)\)
<=>\(\left(x-1\right)\left(2x-3\right)-3x\left(\frac{x-1}{\sqrt{x+3}+2}\right)\)
<=>\(\left(x-1\right)\left(2x-3-\frac{3x}{\sqrt{x+3}+2}\right)\)
<=> \(\hept{\begin{cases}x=1\\x=\frac{1+\sqrt{13}}{2}\end{cases}}\)
|x+2|=2x-1
=> x + 2 = 2x - 1 hoặc x + 2 = - ( 2x - 1)
=> x - 2x = -1 - 2 hoặc x + 2 = -2x + 1
=> -x = -3 hoặc x + 2x = 1 - 2
=> x = 3 hoặc 3x = -1
=> x = 3 hoặc x = -1/3
|x+2|=2-3x
=> x + 2 = 2 - 3x hoặc x + 2 = - (2 - 3x)
=> x + 2 = 2 - 3x hoặc x + 2 = -2 + 3x
=> x + 3x = 2 - 2 hoặc x - 3x = -2 - 2
=> 4x = 0 hoặc -2x = -4
=> x = 0 hoặc x = 2
\(\left|x+2\right|=2x-1\Leftrightarrow\left|x+2\right|=\left(20+x\right)-1\)
\(\Leftrightarrow\left|x+2\right|=19+x\) \(\Rightarrow x=\orbr{\begin{cases}9\\2\end{cases}}\)
\(\orbr{\begin{cases}\left|x+2\right|=2-3x\Leftrightarrow\left|x+2\right|=2-30+X\\\Leftrightarrow\left|x+2\right|=-28+x\end{cases}}\Rightarrow x=\orbr{\begin{cases}-14\\2\end{cases}}\)
PS: Không chắc nhé! Sai đừng trách