\(x^2+2018x-2017=2\sqrt{2020x-2019}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 10 2019

ĐKXĐ:...

\(\Leftrightarrow x^2-2x+1+2020x-2019-2\sqrt{2020x-2019}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2020x-2019}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2020x-2019}-1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

1 tháng 10 2019

\(DK:x\ge\frac{2019}{2020}\)

\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow x=1\left(n\right)\)

Vay nghiem cua PT la \(x=1\)

21 tháng 5 2020

srtgb6yyyyyyyy

24 tháng 5 2020

\(2018x^2-\left(m-2019\right)x-2020=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)

             \(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))

Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)

Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)

\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)

\(\Leftrightarrow x_1^2-x_2^2=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)

Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)

                                                                                      \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)

\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)

Vậy không có m để thỏa mãn bài toán 

11 tháng 3 2018

ĐK: \(x\ge\frac{2017}{2018}\)

\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)

\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)

Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

7 tháng 7 2019
  1. Tập xác định của phương trình

  2. Biến đổi vế trái của phương trình

  3. Phương trình thu được sau khi biến đổi

  4. Lời giải thu được

Kết quả: Giải phương trình với tập xác định

x ∈ ∅
7 tháng 7 2019

Cái này tui search mạng nhá

22 tháng 12 2019

\(DK:x\ge\frac{2020}{2019}\)

PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)

:)

2 tháng 1 2020

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó

8 tháng 12 2018

Chiều mk lm cho

Đang dùng đt

8 tháng 12 2018

Ta có:

\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)

\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)

\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)

\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)