Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\ge\frac{2019}{2020}\)
\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow x=1\left(n\right)\)
Vay nghiem cua PT la \(x=1\)
\(2018x^2-\left(m-2019\right)x-2020=0\)
Ta có \(\Delta=b^2-4ac\)
\(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)
\(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))
Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)
Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)
\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)
\(\Leftrightarrow x_1^2-x_2^2=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)
Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)
\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)
Vậy không có m để thỏa mãn bài toán
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
ĐK: \(x\ge\frac{2017}{2018}\)
\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)
\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)
Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(DK:x\ge\frac{2020}{2019}\)
PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)
:)
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
Ta có:
\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)
ĐKXĐ:...
\(\Leftrightarrow x^2-2x+1+2020x-2019-2\sqrt{2020x-2019}+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2020x-2019}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2020x-2019}-1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)