K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015
a, x^2-9=0 <=>x^2-3^2=0 <=>(x+3).(x-3)=0 <=>x+3=0 hc. X-3=O <=>x=-3. Hc. X=3 Vậy S={3;-3}
25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

27 tháng 6 2016

\(\frac{x+3}{x-2}+6-\left(\frac{x-3}{x+2}\right)^2-7\left(\frac{x^2-9}{x^2-4}\right)=0\)

điều kiện xác định X khác (-2,-3,2,3)

<=> \(\frac{\left(x+3\right)\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)^2}-\frac{\left(x-3\right)^2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)^2}-\frac{7\left(x^2-3\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)^2}=0\)

=> \(\left(x+3\right)\left(x+2\right)^2-\left(x-3\right)^2\left(x-2\right)-7\left(x^2-9\right)\left(x-2\right)=0\)

<=>\(\left(x+3\right)\left(x^2+4x+4\right)-\left(x^2-6x+9\right)\left(x-2\right)-7\left(x^3-2x^2-9x+18\right)=0\)

\(x^3+7x^2+16x+12-x^3+8x^2-21x+18-7x^3+14x^2+63x-126=0\)

<=> \(-7x^3+29x^2+58x-96=0\)

giải pt trên rồi kết họp đk là xong

10 tháng 1 2016

a)<=>(x^2+x-3)(x^2+x-2)-12=(x-2)(x+3)(x^2+x+1)

TH1:=>x-2=0

=>x=2

TH2:x+3=0

=>x=-3

dựa vô bệt thức ta thấy

D<0=> phương trình ko có nghiệm thực

=>x=-3 hoặc 2

nhớ tick nhé

10 tháng 1 2016

a)x=-3 hoặc 2

 

24 tháng 4 2021

bạn tự kết luận nhé ! 

a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)

\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)

c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)

d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)

\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )

e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)

\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)

\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)

\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)

Đặt \(144x^2-60x+4=t\)

\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)

\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)

suy ra :TH1 :  \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)

TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)

\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}

5 tháng 7 2017

a) Ta có : 5x2 - 4(x- 2x + 1) - 5 = 0

<=> 5x2 - 4x+  8x - 4 - 5 = 0

<=> x2 + 8x - 9 = 0

<=> x- x + 9x - 9 = 0

<=> x(x - 1) + 9(x - 1) = 0

<=> (x + 9) (x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}