K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2015

vô nghiệm vì x^2 .=o ==.> x^2 +1>o nên (x^2 +1)^2  + (x +3 )^2   >0 vậy pt vô nghiệm

 

28 tháng 7 2016

x bang 5

5 tháng 8 2016

bang 5

4 tháng 6 2015

đặt  \(\left(x^2+1\right)^2=t\left(t\ge1\right)\)

=> pt đã cho <=> \(t^2+3t+2=0\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\Rightarrow t=-1hoặc.t=-2\)

không thỏa mãn điều kiện

=> PTVN

11 tháng 9 2015

Phần b. Nhân cả hai vế với 3 ta được \(3x^3-3x^2-3x=1\to4x^3=x^3+3x^2+3x+1\to4x^3=\left(x+1\right)^3\to\sqrt[3]{4}x=x+1\)

\(\to\left(\sqrt[3]{4}-1\right)x=1\to x=\frac{1}{\sqrt[3]{4}-1}\)

2 tháng 5 2015

Đặt x2 -x+1 =t

=> t2 -3t -4=0

<=> (t-1)(t-4)=0

<=>{x2-x+1-1=0 và x2-x+1-4=0

rồi tự giải tiếp nhá

 

\(x^2-2\left(-3-1\right)x+\left(-3\right)^2-1=0\)

\(\Leftrightarrow x^2-2\left(-4\right)x+9-1=0\)

\(\Leftrightarrow x^2+8x+8=0\)

Ta có : \(\Delta=8^2-4.1.8=84-32=52>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-\sqrt{52}}{2};x_2=\frac{-8+\sqrt{52}}{2}\)

27 tháng 2 2018

\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)

=> Phương trình đã cho là phương trình vô nghiệm

28 tháng 2 2018

thôi cho sửa lại ...

\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)

Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}