Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^3-x^2+x^2-x-2x+2=x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)\left(x^2+2x-x-2\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x+2\right)=\left(x-1\right)^2\left(x+2\right)\)=> x=1 hoặc x=-2
b) \(\left|\left(x-2\right)^2+3\right|+10=13\). vì (x-2)^2 >=0 với mọi x => (x-2)^2+3>0=>giá trị tuyệt đối = chính nó
\(\Leftrightarrow\left(x-2\right)^2+3=3\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
c)
th1: nếu \(x\ge-\frac{3}{4}\)=> \(x+\frac{3}{4}-4x+2=0\Rightarrow-3x=-\frac{11}{4}\Leftrightarrow x=\frac{11}{2}\)( t/m đk)
th2: Nếu \(x<-\frac{3}{4}\)=> \(-x-\frac{3}{4}-4x+2=0\Leftrightarrow-5x=-\frac{5}{4}\Leftrightarrow x=\frac{1}{4}\)(k t/m đk)
=> x=11/2
Dùng denta mà tính phần a ,chứ phân tích đa thức thành nhân tử ra nghiệm xấu lắm
Pb bấm mt ra x1 = 5/3, x2 = - 2
Sau này lên lớp 9 sẽ có denta giải nghiệm bằng nhiều cách :)))
Học tốt!
\(a)\)
\(x^2-2x-10=0\)
\(\Rightarrow\left(x^2-2x+1\right)-11=0\)
\(\Rightarrow\left(x-1\right)^2=11\)
\(\Rightarrow x-1=\pm\sqrt{11}\)
\(\Rightarrow x=1\pm\sqrt{11}\)
Vậy ...
\(b)\)
\(3x^2+x-10=0\)
\(\Rightarrow x^2+\frac{x}{3}-\frac{10}{3}=0\)
\(\Rightarrow[x^2+2x.\frac{1}{6}+\left(\frac{1}{6}\right)^2]-\frac{121}{36}=0\)
\(\Rightarrow\left(x+\frac{1}{6}\right)^2=\frac{121}{36}\)
\(\Rightarrow x+\frac{1}{6}=\pm\frac{11}{6}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\left(-2\right)\end{cases}}\)
Vậy ...
Phân tích được : \(\left(x^2+\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2=-10\)
<=> \(\left(x^2-y+1\right)\left(x^2+y\right)=-10\)
Mà \(-10=-1.10=-10.1=-2.5=-5.2\)
Mình làm 1 trường hợp còn lại bạn làm tương tự nha :
VD cặp số đầu tiên là -1.10 => \(\hept{\begin{cases}x^2-y+1=-1\\x^2+y=10\end{cases}}\)
=> \(\hept{\begin{cases}x^2-y=-2\\x^2+y=10\end{cases}}\)=> hoặc x=-2 y=6 hoặc x=2 y=6
Ta có : \(x^4+x^2-y^2+y+10=0\)
\(\Leftrightarrow\left(x^4-y^2\right)+\left(x^2+y\right)=-10\)
\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y\right)+\left(x^2+y\right)=-10\)
\(\Leftrightarrow\left(x^2+y\right)\left(x^2-y+1\right)=-10\)
Vậy nên \(x^2+y;x^2-y+1\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng:
\(x^2+y\) | -1 | -2 | -5 | -10 | 1 | 2 | 5 | 10 |
\(x^2-y+1\) | 10 | 5 | 2 | 1 | -10 | -5 | -2 | -1 |
y | -5 | -3 | -3 | -5 | 6 | 4 | 4 | 6 |
x | \(\pm2\) | \(\pm1\) | (L) | (L) | (L) | (L) | \(\pm1\) | \(\pm2\) |
(x;y) | (2;-5) , (-2;-5) | (1;-3) , (-1; -3) | (1;4) , (-1;4) | (2;6) , (-2;6) |
Vậy có 8 cặp số (x;y) thỏa mãn.
1.
Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào pt:
\(\Rightarrow a^2+10a+24=0\)
\(\Leftrightarrow a^2+6a+4a+24=0\)
\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)
\(\Rightarrow x=3,x=2,x=4,x=1\)
T I C K mình sẽ giải típ cho cảm ơn
1) \(x^4-2x^2-144x+1295=0\)
\(\Rightarrow\)Cậu xem lại đề thử xem nhé !
2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)
\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)
\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)
\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-2=0\)
hoặc \(x^2+x+4=0\)
\(\Leftrightarrow\)\(x=-3\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
3) \(x^4-2x^3+4x^2-3x-10=0\)
\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)
\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-2=0\)
hoặc \(x^2-x+5=0\)
\(\Leftrightarrow x=-1\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)
a) \(x^2+7x+10=0\)
\(\Leftrightarrow x^2+2x+5x+10=0\)
\(\Leftrightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-5\end{cases}}\)
Vậy....
b) \(x^3=25x\)
\(\Leftrightarrow x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\left\{\pm5\right\}\end{cases}}\)
Vậy....
Đặt \(x^2+10=t\)
\(\Rightarrow t^2-13t+22=0\)
\(\Leftrightarrow t^2-11t-2t+22=0\)
\(\Leftrightarrow t\left(t-11\right)-2\left(t-11\right)=0\)
\(\Leftrightarrow\left(t-11\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\t-11=0\end{matrix}\right.\)
Tự làm nốt