Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này khá khó chịu tui làm bên h r` thì phải mà giờ lật lại có toi bn rảnh thì vô đây tìm nhé h.vn/vip/thangbnsh
\(\left(x-2008\right)^{2010}+\left(x-2009\right)^{2010}=1\)\(1\)====>> \(\hept{\begin{cases}x-2008=1\\x-2009=0\end{cases}}< =>\hept{\begin{cases}x=20009\\x=2009\end{cases}}< =>x=20009\) Vậy x=2009 thì PT có GT là 1
a) nhé ta đặt \(\sqrt{x^2+2010}=a;x^2=b\)
từ phương rình => \(b^2+a=2010\)
và \(a^2-b=2010\)
nên ta có hệ phương trình sau
\(\hept{\begin{cases}b^2+a=2010\\a^2-b=2010\end{cases}}\)
trừ hai vếcủa heẹ phương trình ta có
\(a^2-b^2-b-a=0\Leftrightarrow\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)
đến đay thì dễ rồi nhé
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)
\(\left[x-1\right]^{2010}\ge0\)
\(\Rightarrow x^{2003}\ge1\)
\(\Rightarrow x^{2003}+\left[x-1\right]^{2010}\ge1\)
=> x2003 + [x-1]2010 = 1 khi x = 1
Nó có 2 nghiệm là \(\hept{\begin{cases}x=0\\x=1\end{cases}}\) lận đấy b Đào Trọng Luân - Trang của Đào Trọng Luân - Học toán với OnlineMath