Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+y^2+z^2=y\left(x+z\right)\Rightarrow x^2+y^2+z^2-y\left(x+z\right)=0\)
\(\Rightarrow x^2+y^2+z^2-xy-zy=0\Rightarrow\)(nhân 2 vô)\(\Rightarrow2x^2+2y^2+2z^2-2xy-2zy=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+z^2=0\)\(\Rightarrow x=y=z=0\)
P/S: Bạn trên kia làm sai rồi nhé !
có thể biến đổi trực tiếp a về biến (x-2y)
a=x^2+y^2+xy
=x^2-2xy+y^2+3xy
=x(x-2y)+3xy+y^2
=x(x-2y)+3y(x-2y)+6y^2+y^2
=x+3y+7y^2
=x-2y+5y+7y^2
-------------------ok mất x luôn
=1+5y+7y^2
=7(y^2+5/7.y+1/7)
=7(y^2+2.5/14y+(5/14)^2+1/7-(5/14)^2
=7[(y+5/14)^2+(1/7-5/14)^2]>=7*[1/7-(5/...
=1-5.5.7/7.7.2.2=1-25/28=3/28
đẳng thức khi y=-5/14=> x=5/7+1
\(x^2+y^2+z^2=x\left(y+z\right)\Rightarrow2x^2+2y^2+2z^2=2xy+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2xz=0\)
\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+y^2+z^2=0\)
\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2=0\)
Vì \(\left(x-y\right)^2\ge0\forall x,y\)
\(\left(x-z\right)^2\ge0\forall x,z\)
\(y^2\ge0\forall y\)
\(z^2\ge0\forall z\)
\(\Rightarrow\left(x-y\right)^2+\left(x-z\right)^2+y^2+z^2\ge0\forall x,y,z\)
Dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\x=z\\y=0;z=0\end{cases}}\)
=> x=y=z=0 là nghiệm của pt
Phân tích vế trái ta được
2(x2 + y2 + z2 − (xy + yz + zx))2(x2 + y2 + z2 − (xy + yz + zx))
Phân tích vế phải ta được
6(x2 + y2 + z2 − (xy + yz + zx))6(x2 + y2 + z2 − (xy + yz + zx))
Vì VT = VP nên VP - VT=0
→ 4(x2 + y2 + z2 − (xy + yz + zx)) = 0
→2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0
→2((x − y)2 + (y − z)2 + (z − x)2) = 0
→(x − y)2 + (y − z)2 + (z − x)2 = 0
→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0→x = y = z
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0