Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
\(ĐK\sqrt{x-1}\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)
Đặt \(\sqrt{x-1}-2=t\Rightarrow\sqrt{x-1}-3=t-1\)
\(|t|-|t-1|=1\)
\(th1:t-1+t=1\Rightarrow2t-1=1\Rightarrow2t=2\Rightarrow t=1\)
\(t=1\Rightarrow\sqrt{x-1}-2=1\Rightarrow\sqrt{x-1}=3\Rightarrow x-1=9\Rightarrow x=8\)
\(th2:-t-t+1=1\Rightarrow-2t=0\Rightarrow t=0\)
\(t=0\Rightarrow\sqrt{x-1}-2=0\Rightarrow\sqrt{x-1}=2\Rightarrow x-1=4\Rightarrow x=5\)
Vậy x = 8 : x = 5
a) ĐK: \(x>2009;y>2010;z>2011\)
\(\Leftrightarrow\frac{\sqrt{x-2009}-1}{x-2009}-\frac{1}{4}+\frac{\sqrt{y-2010}-1}{y-2010}-\frac{1}{4}+\frac{\sqrt{z-2011}-1}{z-2011}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{-\left(\sqrt{x-2009}-2\right)^2}{4\left(x-2009\right)}+\frac{-\left(\sqrt{y-2010}-2\right)^2}{4\left(y-2010\right)}+\frac{-\left(\sqrt{z-2011}-2\right)^2}{4\left(z-2011\right)}=0\left(1\right)\)
Dễ thấy với đkxđ thì \(VT\left(1\right)\le0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-2009}=2\\\sqrt{y-2010}=2\\\sqrt{z-2011}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2013\\y=2014\\z=2015\end{cases}\left(tm\right)}}\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)(*)
\(ĐK:\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)
(*)\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x-3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\\sqrt{x+3}+\sqrt{x-3}=0\end{cases}}\)
Xét phương trình\(\sqrt{x+3}+\sqrt{x-3}=0\)(**) có \(\sqrt{x+3}\ge0;\sqrt{x-3}\ge0\)nên (**) xảy ra khi \(\hept{\begin{cases}\sqrt{x+3}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\x=3\end{cases}}\left(L\right)\)
Vậy phương trình có một nghiệm duy nhất là 3
ĐK: \(x\ge-1;y\ge3;z\ge1\)
\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}\le\frac{x+1+1+y-3+1+z-1+1}{2}=\frac{x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=4\\z=2\end{cases}\left(tm\right)}\)
Em không chắc đâu ạ. Nhận thấy x = 2 là nghiệm của phương trình,ta biến đổi như sau:
ĐKXĐ: \(1\le x\le3\)
\(PT\Leftrightarrow x^2-4x+6+\left(x-1-\sqrt{x-1}\right)+\left(x-1-\sqrt{3-x}\right)-2x+2=0\)
\(\Leftrightarrow x^2-6x+8+\frac{\left(x-1\right)^2-\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-1\right)^2-\left(3-x\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{x^2-3x+2}{\left(x-1\right)+\sqrt{x-1}}+\frac{x^2-x-2}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4+\frac{x-1}{\left(x-1\right)+\sqrt{x-1}}+\frac{x+1}{\left(x-1\right)+\sqrt{3-x}}\right)=0\)
\(\Leftrightarrow x=2\)(chỗ này em không biết giải rõ ra thế nào nữa,chỉ biết x = 2 là nghiệm của cả hai cái ngoặc.Nhờ các anh chị chỉ rõ ra bước này giúp em ạ.Em cảm ơn)
ĐKXĐ \(1\le x\le3\)
áp dụng Cauchy ngược dấu
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)
\(\sqrt{\left(3-x\right).1}\le\frac{3-x+1}{2}=\frac{-x}{2}+2\)
\(\Rightarrow\sqrt{x-1}+\sqrt{3-x}\le\frac{x}{2}+\frac{-x}{2}+2=2\)
Theo giả thiết \(\sqrt{x-1}+\sqrt{3-x}=x^2-4x+6\)
\(\Rightarrow x^2-4x+6\le2\Leftrightarrow x^2-4x+4\le0\Leftrightarrow\left(x-2\right)^2\le0\)
Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(TMĐK\right)\)
Vậy phương trình đã cho có nghiệm duy nhất x=2
\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)
(Đk có nghiệm: \(x\ge\frac{1}{2}\))
\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)
đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}\left(a,b\ge0\right)}\)
\(\Rightarrow\hept{\begin{cases}x^2-x+1=b^2\\\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=ab\end{cases}}\)
PT tương đương với :
\(x^2-x+1+2\sqrt{\left(x+1\right)\left(x^2-x+1\right)}-1=2\sqrt{x+1}\)
\(\Leftrightarrow b^2+2ab-1=2a\Leftrightarrow b^2+2ab+a^2=a^2+2a+1\)
\(\Leftrightarrow\left(a+b\right)^2=\left(a+1\right)^2\Leftrightarrow\orbr{\begin{cases}a+b=a+1\\a+b=-\left(a+1\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}b=1\\loai\left(VT\ge0;VP< 0\right)\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-x+1}=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}\left(tm\right)}\)
Vậy ...