\(\frac{^{x^2}}{\left(x+1\right)^2}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Điều kiện xác định : \(x\ne-1\)

Thêm \(-\frac{2x^2}{x+1}\) vào hai vế của phương trình đã cho được : 

\(x^2-2.x.\frac{x}{x+1}+\frac{x^2}{\left(x+1\right)^2}=1-\frac{2x^2}{x+1}\)

\(\Leftrightarrow\left(x-\frac{x}{x+1}\right)^2=1-\frac{2x^2}{x+1}\)

\(\Leftrightarrow\left(\frac{x^2}{x+1}\right)^2+\frac{2x^2}{x+1}-1=0\)

Đặt \(t=\frac{x^2}{x+1}\) thì pt trên trở thành \(t^2+2t-1=0\Leftrightarrow\orbr{\begin{cases}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\end{cases}}\)

Tới đây bạn tự giải nhé :)

20 tháng 10 2020

Check lại đề phát bạn.

19 tháng 8 2017

Câu 1/ 

x4 + (x - 1)(x2 - 2x + 2) = 0

\(\Leftrightarrow\)x4 + x3 - 3x2 + 4x - 2 = 0

\(\Leftrightarrow\)(x4 - x3 + x2) + (2x3 - 2x2 + 2x) + (- 2x2 + 2x + 2) = 0

\(\Leftrightarrow\)(x2 - x + 1)(x2 + 2x - 2) = 0

Tới đây tự làm tiếp nhé.

19 tháng 8 2017

Câu 2/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x-2}{x-4}=b\end{cases}}\)

Thì ta có pt

\(\Leftrightarrow\)a2 + ab - 12b2 = 0

\(\Leftrightarrow\)(a2 - 3ab) + (4ab - 12b2) = 0

\(\Leftrightarrow\)(a - 3b)(a + 4b) = 0

Tự làm phần còn lại nhé.

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

9 tháng 10 2016

ĐKXĐ : \(x\ne-2\)

\(x^2+\frac{4x^2}{\left(x+2\right)^2}=12\)

Cộng vào hai vê của pt với \(-\frac{4x^2}{x+2}\) được : 

\(x^2-\frac{4x^2}{x+2}+\frac{4x^2}{x+2}=12-\frac{4x^2}{x+2}\)

\(\Leftrightarrow\left(x-\frac{2x}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)

\(\Leftrightarrow\left(\frac{x^2}{x+2}\right)^2=12-\frac{4x^2}{x+2}\)

Đặt \(t=\frac{x^2}{x+2}\) thì pt trở thành \(t^2=12-4t\Leftrightarrow t^2+4t-12=0\Leftrightarrow\left(t+6\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

Từ đó dễ dàng tìm ra x