Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
A=(x+3+2.(x^-9)^1/2):(2x-6+(x^2-9)^1/2
B=(x^2+5x+6+x.(9-x^2)^1/2):(3x-x^2+(x+2).(9-x^2)^1/2
Rút gọn:
A=(x+3+2.(x^-9)^1/2)/(2x-6+(x^2-9)^1/2
B=(x^2+5x+6+x.(9-x^2)^1/2)/(3x-x^2+(x+2).(9-x^2)^1/2
ta có : \(A=\dfrac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{x-3}}\)
ta có : \(B=\dfrac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}=\dfrac{\left(x+2\right)\left(x+3\right)+x\sqrt{ 9-x^2}}{x\left(3-x\right)+\left(x+2\right)\sqrt{9-x^2}}\)
\(=\dfrac{\sqrt{x+3}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(x\sqrt{3-x}+\left(x+2\right)\sqrt{x+3}\right)}=\dfrac{\sqrt{x+3}}{\sqrt{3-x}}\)
1/ Đặt \(\sqrt{9-x^2}=a\ge0\)
\(\Rightarrow\frac{9-a^2}{3+a}+\frac{1}{12-4a}=1\)
\(\Leftrightarrow4a^2-20a+25=0\)
\(\Leftrightarrow a=\frac{5}{2}\)
\(\Rightarrow\sqrt{9-x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2=\frac{11}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{11}}{2}\\x=\frac{\sqrt{11}}{2}\end{cases}}\)
2/ \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-1=0\)
\(\Leftrightarrow\frac{9+2x^2}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)
Đặt \(\frac{x}{\sqrt{2x^2+9}}=a\)
\(\Rightarrow\frac{1}{a^2}+2a-3=0\)
\(\Leftrightarrow2a^3-3a^2+1=0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)=0\)
Làm nốt nhé
e) ĐKXĐ: \(x^2-9\ge0\Leftrightarrow\left(x-3\right).\left(x+3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right).\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(TH1:x-3=0\Leftrightarrow x=3\)
\(TH2:\sqrt{x-3}=-\sqrt{x+3}\Leftrightarrow x=3\text{ và }x=-3\left(loai\right)\)
Vậy giá trị x cần tìm là 3
ĐKXĐ: \(3-x\ge0\Leftrightarrow x\le3\)
\(\sqrt{x^2-6x+9}=3-x\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3-x\\3-x=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\\text{vô số x tm}\left(x\le3\right)\end{matrix}\right.\)
Vậy giá trị x cần tìm là \(x\le3\)
\(\left(x^2-9\right)-9\left(x-3\right)^2\\ =\left(x-3\right)\left(x+3\right)-9\left(x-3\right)^2\\ =\left(x-3\right)\left[\left(x+3\right)-9\left(x-3\right)\right]\\ =\left(x-3\right)\left(x+3-9x+27\right)\\ =\left(x-3\right)\left(30-8x\right)\)